Summer savory (Satureja hortensis L., Lamiaceae) is used in several regions of the world as a spice and folk medicine. Anti-inflammatory and cytoprotective effects of S. hortensis and of its rosmarinic acid-rich phenolic fraction have been demonstrated in animal trials. However, previous studies of rosmarinic acid in cell models have yielded controversial results. In this study, we investigated the effects of summer savory extracts on H2O2-challenged human lymphoblastoid Jurkat T cells. LC-MS analysis confirmed the presence of rosmarinic acid and flavonoids such as hesperidin and naringin in the phenolic fraction. Adding 25 or 50?μM of H2O2 to the cell culture caused oxidative stress, manifested as generation of superoxide and peroxyl radicals, reduced cell viability, G0/G1 arrest, and enhanced apoptosis. This stress was significantly alleviated by the ethanolic and aqueous extracts of S. hortensis and by the partially purified rosmarinic acid fraction. The application of an aqueous S. hortensis extract doubled the activity of catalase and superoxide dismutase in the cells. The production of IL-2 and IL-10 interleukins was stimulated by H2O2 and was further enhanced by the addition of the S. hortensis extract or rosmarinic acid fraction. The H2O2-challenged Jurkat cells may serve as a model for investigating cellular mechanisms of cytoprotective phytonutrient effects. 1. Introduction Summer savory (Satureja hortensis L.) is an herb of the Lamiaceae family that is used in cooking and folk medicine in several regions of the world [1]. In Georgia, dried and ground summer savory (local name kondari) is one of the most popular spices, used either on its own or as an ingredient in spice blends. In addition, from ancient times, it has been known locally as an antimicrobial folk remedy for gastrointestinal problems [2]. Indigenous landraces of summer savory are cultivated in Georgia [3]. The leaves of summer savory are rich in phenolic compounds, particularly rosmarinic acid and flavonoids, which account for the high antioxidant capacity of these leaves [4, 5]. In our previous study of Georgian spices, we found that kondari had one of the highest total phenolic content levels and one of the highest hydrophilic antioxidant capacity levels [6]. Rosmarinic (α-O-caffeoyl-3,4-dihydroxy-phenyl lactic) acid was found to be the major compound in ethanolic extracts of summer savory and some other Lamiaceae herbs [4]. Rosmarinic acid is a phenylpropanoid derivative that is the second most common ester of caffeic acid in the plant kingdom. Animal studies have revealed
References
[1]
S. Momtaz and M. Abdollahi, “An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation,” International Journal of Pharmacology, vol. 6, no. 4, pp. 454–461, 2010.
[2]
N. Gelovani, T. Tsintsadze, Kh. Tzikarishvili, and L. Targamadze L, “Savory (Saturea hortensis L.) in the Georgian historical chronicles,” Transactions of Georgian Technical University, vol. 483, no. 1, pp. 59–63, 2012.
[3]
M. Akhalkatsi, J. Ekhvaia, and Z. Asanidze, “Diversity and genetic erosion of ancient crops and wild relatives of agricultural cultivars for food: implications for nature conservation in Georgia (Caucasus),” in Perspectives on Nature Conservation—Patterns, Pressures and Prospects, J. Tiefenbacher, Ed., chapter 3, pp. 51–92, InTech, New York, NY, USA, 2012.
[4]
V. Exarchou, N. Nenadis, M. Tsimidou, I. P. Gerothanassis, A. Troganis, and D. Boskou, “Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory,” Journal of Agricultural and Food Chemistry, vol. 50, no. 19, pp. 5294–5299, 2002.
[5]
é. P. Kemertelidze, T. G. Sagareishvili, V. N. Syrov, and Z. A. Khushbaktova, “Chemical composition and pharmacological activity of garden savory (Satureja hortensis L.) occurring in Georgia,” Pharmaceutical Chemistry Journal, vol. 38, no. 6, pp. 319–322, 2004.
[6]
V. Rodov, Y. Vinokur, N. Gogia, and I. Chkhikvishvili, “Hydrophilic and lipophilic antioxidant capacities of Georgian spices for meat and their possible health implications,” Georgian Medical News, no. 179, pp. 61–66, 2010.
[7]
V. Hajhashemi, A. Ghannadi, and S. K. Pezeshkian, “Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil,” Journal of Ethnopharmacology, vol. 82, no. 2-3, pp. 83–87, 2002.
[8]
C. Uslu, R. M. Karasen, F. Sahin, S. Taysi, and F. Akcay, “Effects of aqueous extracts of Satureja hortensis L. on rhinosinusitis treatment in rabbit,” Journal of Ethnopharmacology, vol. 88, no. 2-3, pp. 225–228, 2003.
[9]
C. Sanbongi, H. Takano, N. Osakabe et al., “Rosmarinic acid inhibits lung injury induced by diesel exhaust particles,” Free Radical Biology and Medicine, vol. 34, no. 8, pp. 1060–1069, 2003.
[10]
N. Osakabe, H. Takano, C. Sanbongi et al., “Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA): inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism,” BioFactors, vol. 21, no. 1–4, pp. 127–131, 2004.
[11]
M. Tavafi and H. Ahmadvand, “Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats,” Tissue and Cell, vol. 43, no. 6, pp. 392–397, 2011.
[12]
R. T. Abraham and A. Weiss, “Jurkat T cells and development of the T-cell receptor signalling paradigm,” Nature Reviews Immunology, vol. 4, no. 4, pp. 301–308, 2004.
[13]
G. Nindl, N. R. Peterson, E. F. Hughes, L. R. Waite, and M. T. Johnson, “Effect of hydrogen peroxide on proliferation, apoptosis and interleukin-2 production of Jurkat T cells,” Biomedical Sciences Instrumentation, vol. 40, pp. 123–128, 2004.
[14]
M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nature Immunology, vol. 3, no. 12, pp. 1129–1134, 2002.
[15]
J. W. Baty, M. B. Hampton, and C. C. Winterbourn, “Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells,” Biochemical Journal, vol. 389, pp. 785–795, 2005.
[16]
A. Barbouti, P.-T. Doulias, L. Nousis, M. Tenopoulou, and D. Galaris, “DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: Bolus addition versus continuous generation of H2O2,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 691–702, 2002.
[17]
R. Chiaramonte, E. Bartolini, P. Riso et al., “Oxidative stress signalling in the apoptosis of Jurkat T-lymphocytes,” Journal of Cellular Biochemistry, vol. 82, no. 3, pp. 437–444, 2001.
[18]
Y. Saito, K. Nishio, Y. Ogawa et al., “Turning point in apoptosis/necrosis induced by hydrogen peroxide,” Free Radical Research, vol. 40, no. 6, pp. 619–630, 2006.
[19]
E. Kolettas, C. Thomas, E. Leneti et al., “Rosmarinic acid failed to suppress hydrogen peroxide-mediated apoptosis but induced apoptosis of Jurkat cells which was suppressed by Bcl-2,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 111–120, 2006.
[20]
Y.-G. Hur, Y. Yun, and J. Won, “Rosmarinic acid induces p56lck-dependent apoptosis in jurkat and peripheral T cells via mitochondrial pathway independent from fas/fas ligand interaction,” Journal of Immunology, vol. 172, no. 1, pp. 79–87, 2004.
[21]
R. J. Ruch, S.-J. Cheng, and J. E. Klaunig, “Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea,” Carcinogenesis, vol. 10, no. 6, pp. 1003–1008, 1989.
[22]
N. Zamzami, S. A. Susin, P. Marchetti et al., “Mitochondrial control of nuclear apoptosis,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1533–1544, 1996.
[23]
H. Aebi, “Catalase,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., vol. 2, pp. 673–684, Academic Press, New York, NY, USA, 2nd edition, 1974.
[24]
P. Kakkar, B. Das, and P. N. Viswanathan, “A modified spectrophotometric assay of superoxide dismutase,” Indian Journal of Biochemistry and Biophysics, vol. 21, no. 2, pp. 130–132, 1984.
[25]
U. Justesen, “Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs,” Journal of Chromatography A, vol. 902, no. 2, pp. 369–379, 2000.
[26]
B. Blazics, Analysis of Medicinal Plant Phenoloids by Coupled Tandem Mass Spectrometry [Ph.D. dissertation], Semmelweis University, Budapest, Hungary, 2010.
[27]
T. Askun, G. Tumen, F. Satil, S. Modanlioglu, and O. Yalcin, “Antimycobacterial activity of some different Lamiaceae plant extracts containing flavonoids and other phenolic compounds,” in Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance, P. J. Cardona, Ed., chapter 14, pp. 309–336, InTech, New York, NY, USA, 2012.
[28]
F. Mosaffa, J. Behravan, G. Karimi, and M. Iranshahi, “Antigenotoxic effects of Satureja hortensis L. on rat lymphocytes exposed to oxidative stress,” Archives of Pharmacal Research, vol. 29, no. 2, pp. 159–164, 2006.
[29]
H. J. Lee, H.-S. Cho, E. Park et al., “Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis,” Toxicology, vol. 250, no. 2-3, pp. 109–115, 2008.
[30]
S. Qiao, W. Li, R. Tsubouchi et al., “Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages,” Free Radical Research, vol. 39, no. 9, pp. 995–1003, 2005.
[31]
T. Lapidot, M. D. Walker, and J. Kanner, “Can apple antioxidants inhibit tumor cell proliferation? Generation of H2O2 during interaction of phenolic compounds with cell culture media,” Journal of Agricultural and Food Chemistry, vol. 50, no. 11, pp. 3156–3160, 2002.
[32]
B. Halliwell, “Oxidative stress in cell culture: an under-appreciated problem?” FEBS Letters, vol. 540, no. 1–3, pp. 3–6, 2003.
[33]
L. R. Fukumoto and G. Mazza, “Assessing antioxidant and prooxidant activities of phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3597–3604, 2000.
[34]
N. Kitsati, D. Fokas, M. D. Ouzouni, M. D. Mantzaris, A. Barbouti, and D. Galaris, “Lipophilic caffeic acid derivatives protect cells against H2O2-induced DNA damage by chelating intracellular labile iron,” Journal of Agricultural and Food Chemistry, vol. 60, no. 32, pp. 7873–7879, 2012.
[35]
V. E. Kagan, B. Gleiss, Y. Y. Tyurina et al., “A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis,” Journal of Immunology, vol. 169, no. 1, pp. 487–499, 2002.
[36]
E. Saita, Y. Kishimoto, M. Tani et al., “Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects,” Journal of Oleo Science, vol. 61, no. 3, pp. 113–120, 2012.
[37]
K. Itoh, T. Inoue, K. Ito, and S. Hirohata, “The interplay of interleukin-10 (IL-10) and interleukin-2 (IL-2) in humoral immune responses: IL-10 synergizes with IL-2 to enhance responses of human B lymphocytes in a mechanism which is different from upregulation of CD25 expression,” Cellular Immunology, vol. 157, no. 2, pp. 478–488, 1994.
[38]
K. Ostrowski, T. Rohde, S. Asp, P. Schjerling, and B. K. Pedersen, “Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans,” Journal of Physiology, vol. 515, no. 1, pp. 287–291, 1999.
[39]
M. J. Kim, J. Ohn, J. H. Kim, and H.-K. Kwak, “Effects of freeze-dried cranberry powder on serum lipids and inflammatory markers in lipopolysaccharide treated rats fed an atherogenic diet,” Nutrition Research and Practice, vol. 5, no. 5, pp. 404–411, 2011.
[40]
R. L. Zhang, W. D. Luo, T. N. Bi, and S. K. Zhou, “Evaluation of antioxidant and immunity-enhancing activities of Sargassum pallidum aqueous extract in gastric cancer rats,” Molecules, vol. 17, no. 7, pp. 8419–8429, 2012.
[41]
M. Mueller, S. Hobiger, and A. Jungbauer, “Anti-inflammatory activity of extracts from fruits, herbs and spices,” Food Chemistry, vol. 122, no. 4, pp. 987–996, 2010.
[42]
J. L. Martindale and N. J. Holbrook, “Cellular response to oxidative stress: signaling for suicide and survival,” Journal of Cellular Physiology, vol. 192, no. 1, pp. 1–15, 2002.