全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reversal of Myoblast Aging by Tocotrienol Rich Fraction Posttreatment

DOI: 10.1155/2013/978101

Full-Text   Cite this paper   Add to My Lib

Abstract:

Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF) on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS). The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase), and cell proliferation were determined. 50?μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology). The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed. 1. Introduction Skeletal muscle composes 45 to 55% of the total body mass and can be considered as the largest organ in the body [1]. It is a postmitotic tissue which mainly is composed of multinucleated myofibres [2]. The regeneration capability of skeletal muscle to adapt with the normal physiology growth and to compensate with the wear and tear of skeletal muscle due to injury or disease is highly dependent on a population of quiescent progenitors, known as satellite cells [3, 4]. These quiescent mononucleated cells are sequestered between the basal lamina and sarcolemma of myofibres, as originally described by Mauro [5]. These satellite cells were known as myoblasts once they were isolated from muscle biopsies and proliferate in culture [6]. The quiescent satellite cells were activated in response to damage or exercise and proliferated as myoblasts, which further differentiated and fused to repair or form the muscle fibers [7]. Unfortunately, neither skeletal muscle nor the satellite cells could avoid the fate of various modifications during

References

[1]  A. J. Cruz-Jentoft, F. Landi, E. Topinková, and J. P. Michel, “Understanding sarcopenia as a geriatric syndrome,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 1, pp. 1–7, 2010.
[2]  J. Palomero and M. J. Jackson, “Redox regulation in skeletal muscle during contractile activity and aging,” Journal of Animal Science, vol. 88, no. 4, pp. 1307–1313, 2010.
[3]  A. Bigot, V. Jacquemin, F. Debacq-Chainiaux et al., “Replicative aging down-regulates the myogenic regulatory factors in human myoblasts,” Biology of the Cell, vol. 100, no. 3, pp. 189–199, 2008.
[4]  A. Wernig, R. Sch?fer, U. Knauf et al., “On the regenerative capacity of human skeletal muscle,” Artificial Organs, vol. 29, no. 3, pp. 192–198, 2005.
[5]  A. Mauro, “Satellite cell of skeletal muscle fibers,” Journal of Biophysical and Biochemical Cytology, vol. 9, pp. 493–495, 1961.
[6]  I. Riederer, E. Negroni, A. Bigot et al., “Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice,” Transplantation Proceedings, vol. 40, no. 2, pp. 624–630, 2008.
[7]  M. C. Le Bihan, A. Bigot, S. S. Jensen et al., “In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts,” Journal of Proteomics, vol. 77, pp. 344–356, 2012.
[8]  V. Mouly, A. Aamiri, A. Bigot et al., “The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy,” Acta Physiologica Scandinavica, vol. 184, no. 1, pp. 3–15, 2005.
[9]  M. Sandri, L. Barberi, A. Y. Bijlsma et al., “Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF-Akt-mTOR-FoxO pathway,” Biogerontology, vol. 14, no. 3, pp. 303–323, 2013.
[10]  M. Baraibar, M. Gueugneau, S. Duguez, G. Butler-Browne, D. Bechet, and B. Friguet, “Expression and modification proteomics during skeletal muscle ageing,” Biogerontology, vol. 14, no. 3, pp. 339–352, 2013.
[11]  D. Paddon-Jones, K. R. Short, W. W. Campbell, E. Volpi, and R. R. Wolfe, “Role of dietary protein in the sarcopenia of aging,” The American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1562S–1566S, 2008.
[12]  V. E. Arango-Lopera, P. Arroyo, L. Gutiérrez-Robledo, M. U. Perez-Zepeda, and M. Cesari, “Mortality as an adverse outcome of sarcopenia,” Journal of Nutrition Health and Aging, vol. 17, no. 3, pp. 259–262, 2013.
[13]  D. Bunout, M. P. de la Maza, G. Barrera, L. Leiva, and S. Hirsch, “Association between sarcopenia and mortality in healthy older people,” Australasian Journal on Ageing, vol. 30, no. 2, pp. 89–92, 2011.
[14]  A. A. Sayer, E. M. Dennison, H. E. Syddall, H. J. Gilbody, D. I. W. Phillips, and C. Cooper, “Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg?” Diabetes Care, vol. 28, no. 10, pp. 2541–2542, 2005.
[15]  P. Kwan, “Sarcopenia, a neurogenic syndrome?” Journal of Aging Research, vol. 2013, Article ID 791679, 10 pages, 2013.
[16]  V. Renault, L. E. Thornell, G. Butler-Browne, and V. Mouly, “Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock,” Experimental Gerontology, vol. 37, no. 10-11, pp. 1229–1236, 2002.
[17]  T. Kayo, D. B. Allison, R. Weindruch, and T. A. Prolla, “Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5093–5098, 2001.
[18]  S. Makpol, N. Abdul Rahim, C. K. Hui, and W. Z. W. Ngah, “Inhibition of mitochondrial cytochrome c release and suppression of caspases by γ-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 785743, 13 pages, 2012.
[19]  S. Makpol, A. Z. Abidin, K. Sairin, M. Mazlan, G. M. Top, and W. Z. W. Ngah, “γ-tocotrienol prevents oxidative stress-induced telomere shortening in human fibroblasts derived from different aged individuals,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 1, pp. 35–43, 2010.
[20]  J. Ju, S. C. Picinich, Z. Yang et al., “Cancer-preventive activities of tocopherols and tocotrienols,” Carcinogenesis, vol. 31, no. 4, pp. 533–542, 2009.
[21]  Z. Ren, M. Pae, M. C. Dao, D. Smith, S. N. Meydani, and D. Wu, “Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice,” Journal of Nutrition, vol. 140, no. 7, pp. 1335–1341, 2010.
[22]  M. L. Yam, S. R. Abdul Hafid, H. Cheng, and K. Nesaretnam, “Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages,” Lipids, vol. 44, no. 9, pp. 787–797, 2009.
[23]  F. Li, W. Tan, Z. Kang, and C. W. Wong, “Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors,” Atherosclerosis, vol. 211, no. 1, pp. 278–282, 2010.
[24]  K. Fukui, K. Ushiki, H. Takatsu, T. Koike, and S. Urano, “Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells,” Free Radical Research, vol. 46, no. 2, pp. 184–193, 2012.
[25]  N. Muhammad, D. A. Luke, A. N. Shuid, N. Mohamed, and I. N. Soelaiman, “Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 161527, 7 pages, 2012.
[26]  J. S. Zhang, D. M. Li, Y. Ma et al., “γ-tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells,” PLoS ONE, vol. 8, no. 2, Article ID e57779, 2013.
[27]  S. Makpol, L. W. Durani, K. H. Chua, Y. A. M. Yusof, and W. Z. W. Ngah, “Tocotrienol-rich fraction prevents cell cycle arrest and elongates telomere length in senescent human diploid fibroblasts,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 506171, 11 pages, 2011.
[28]  H. Adachi and N. Ishii, “Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans,” Journals of Gerontology A, vol. 55, no. 6, pp. B280–B285, 2000.
[29]  F. Edom, V. Mouly, J. P. Barbet, M. Y. Fiszman, and G. S. Butler-Browne, “Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains,” Developmental Biology, vol. 164, no. 1, pp. 219–229, 1994.
[30]  S. J. Kaufman and R. F. Foster, “Replicating myoblasts express a muscle-specific phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9606–9610, 1988.
[31]  G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995.
[32]  A. A. Ferrando, M. Sheffield-Moore, C. W. Yeckel et al., “Testosterone administration to older men improves muscle function: molecular and physiological mechanisms,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 282, no. 3, pp. E601–E607, 2002.
[33]  G. Shefer, G. Rauner, Z. Yablonka-Reuveni, and D. Benayahu, “Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise,” PLoS ONE, vol. 5, no. 10, Article ID e13307, 2010.
[34]  N. Abd Manan, N. Mohamed, and A. N. Shuid, “Effects of low-dose versus high-dose γ-tocotrienol on the bone cells exposed to the hydrogen peroxide-induced oxidative stress and apoptosis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 680834, 10 pages, 2012.
[35]  M. Mazlan, S. M. Then, G. Mat Top, and W. Z. W. Ngah, “Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes,” Journal of the Neurological Sciences, vol. 243, no. 1-2, pp. 5–12, 2006.
[36]  S. Bortoli, V. Renault, E. Eveno, C. Auffray, G. Butler-Browne, and G. Piétu, “Gene expression profiling of human satellite cells during muscular aging using cDNA arrays,” Gene, vol. 321, no. 1-2, pp. 145–154, 2003.
[37]  V. Renault, G. Piron-Hamelin, C. Forestier et al., “Skeletal muscle regeneration and the mitotic clock,” Experimental Gerontology, vol. 35, no. 6-7, pp. 711–719, 2000.
[38]  J. O. Nehlin, M. Just, A. C. Rustan, and M. Gaster, “Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism,” Biogerontology, vol. 12, no. 4, pp. 349–365, 2011.
[39]  B. Y. Lee, J. A. Han, J. S. Im et al., “Senescence-associated β-galactosidase is lysosomal β-galactosidase,” Aging Cell, vol. 5, no. 2, pp. 187–195, 2006.
[40]  G. J. Aan, H. A. Hairi, S. Makpol, and M. A. Rahman, “Differential protein expression in senescent human skin fibroblasts and stress induced premature senescence (SIPS) fibroblasts,” Sains Malaysiana, vol. 40, no. 11, pp. 1247–1253, 2011.
[41]  V. Renault, L. E. Thorne, P. O. Eriksson, G. Butler-Browne, and V. Mouly, “Regenerative potential of human skeletal muscle during aging,” Aging Cell, vol. 1, no. 2, pp. 132–139, 2002.
[42]  M. E. Carlson, M. Hsu, and I. M. Conboy, “Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells,” Nature, vol. 454, no. 7203, pp. 528–532, 2008.
[43]  Y. B. Joshi and D. Praticò, “Vitamin E in aging, dementia, and Alzheimer's disease,” BioFactors, vol. 38, no. 2, pp. 90–97, 2012.
[44]  T. N. Burks, E. Andres-Mateos, R. Marx et al., “Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia,” Science Translational Medicine, vol. 3, no. 82, Article ID 82ra37, 2011.
[45]  F. Haddad and G. R. Adams, “Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1188–1203, 2006.
[46]  X. H. Li, D. Fu, N. H. Latif et al., “δ-tocotrienol protects mouse and human hematopoietic progenitors from γ-irradiation through extracellular signal-regulated kinase/mammalian target of rapamycin signaling,” Haematologica, vol. 95, no. 12, pp. 1996–2004, 2010.
[47]  Y. Saito, K. Nishio, Y. O. Akazawa et al., “Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: tocopherols and tocotrienols exert similar effects by antioxidant function,” Free Radical Biology and Medicine, vol. 49, no. 10, pp. 1542–1549, 2010.
[48]  Y. Y. Mo, H. Tang, and L. Miele, “Notch-associated MicroRNAs in cancer,” Current Drug Targets, vol. 14, no. 10, pp. 1157–1166, 2013.
[49]  J. F. Chen, Y. Tao, J. Li et al., “microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7,” Journal of Cell Biology, vol. 190, no. 5, pp. 867–879, 2010.
[50]  M. A. Rudnicki, F. Le Grand, I. McKinnell, and S. Kuang, “The molecular regulation of muscle stem cell function,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 323–331, 2008.
[51]  F. Relaix and P. S. Zammit, “Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage,” Development, vol. 139, pp. 2845–2856, 2012.
[52]  J. Luna, M. C. Masamunt, J. Llach, S. Delgado, and M. Sans, “Palm oil tocotrienol rich fraction reduces extracellular matrix production by inhibiting transforming growth factor-β1 in human intestinal fibroblasts,” Clinical Nutrition, vol. 30, no. 6, pp. 858–864, 2011.
[53]  S. Makpol, A. Zainuddin, K. H. Chua, Y. A. M. Yusof, and W. Z. W. Ngah, “γ-tocotrienol modulation of senescenceassociated gene expression prevents cellular aging in human diploid fibroblasts,” Clinics, vol. 67, no. 2, pp. 135–143, 2012.
[54]  N. S. Aliahmat, M. R. M. Noor, W. J. W. Yusof, S. Makpol, W. Z. W. Ngah, and Y. A. M. Yusof, “Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice,” Clinics, vol. 67, no. 12, pp. 1447–1454, 2012.
[55]  S. F. Chin, J. Ibahim, S. Makpol et al., “Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: a randomized controlled study,” Nutrition and Metabolism, vol. 8, article 42, 2011.
[56]  C. K. Chang, H. Y. Huang, H. F. Tseng, Y. D. Hsuuw, and T. K. Tso, “Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles,” Journal of Nutritional Biochemistry, vol. 18, no. 1, pp. 39–45, 2007.
[57]  M. J. Ryan, H. J. Dudash, M. Docherty et al., “Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats,” Experimental Gerontology, vol. 45, no. 11, pp. 882–895, 2010.
[58]  A. A. Sayer, S. M. Robinson, H. P. Patel, T. Shavlakadze, C. Cooper, and M. D. Grounds, “New horizons in the pathogenesis, diagnosis and management of sarcopenia,” Age and Ageing, vol. 42, no. 2, pp. 145–150, 2013.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133