全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

N-n-Butyl Haloperidol Iodide Ameliorates Cardiomyocytes Hypoxia/Reoxygenation Injury by Extracellular Calcium-Dependent and -Independent Mechanisms

DOI: 10.1155/2013/912310

Full-Text   Cite this paper   Add to My Lib

Abstract:

N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ERK1/2-related pathways. In extracellularcalcium-containing hypoxia/reoxygenation cardiomyocytes, PKCα and ERK1/2 were activated, Egr-1 protein level and cTnI leakage increased, and cell viability decreased. The ERK1/2 inhibitors suppressed extracellular-calcium-containing-hypoxia/reoxygenation-induced Egr-1 overexpression and cardiomyocytes injury. PKCα inhibitor downregulated extracellularcalcium-containing-hypoxia/reoxygenation-induced increase in p-ERK1/2 and Egr-1 expression. F2 downregulated hypoxia/reoxygenation-induced elevation of p-PKCα, p-ERK1/2, and Egr-1 expression and inhibited cardiomyocytes damage. The ERK1/2 and PKCα activators antagonized F2’s effects. In extracellular-calcium-free-hypoxia/reoxygenation cardiomyocytes, ERK1/2 was activated, LDH and cTnI leakage increased, and cell viability decreased. F2 and ERK1/2 inhibitors antagonized extracellular-calcium-free-hypoxia/reoxygenation-induced ERK1/2 activation and suppressed cardiomyocytes damage. The ERK1/2 activator antagonized F2’s above effects. F2 had no effect on cardiomyocyte cAMP content or PKA and Egr-1 expression. Altogether, ERK activation in extracellular-calcium-containing and extracellular-calcium-free hypoxia/reoxygenation leads to cardiomyocytes damage. F2 may ameliorate cardiomyocytes hypoxia/reoxygenation injury by regulating the extracellular-calcium-dependent PKCα/ERK1/2/Egr-1 pathway and through the extracellular-calcium-independent ERK1/2 activation independently of the cAMP/PKA pathway or Egr-1 overexpression. 1. Introduction The phenomenon of exacerbated tissue and organ damage produced by the restoration of blood flow after ischemia is known as ischemia/reperfusion (I/R) injury. Studies have demonstrated that this phenomenon takes place in a variety of tissues and organs such as the brain, heart, liver, lungs, kidneys, gastrointestinal tract, limbs, and skin. Myocardial I/R injury is a pathophysiological phenomenon commonly seen after ischemic heart disease and heart surgery. Reducing and eliminating this damage has become a hot topic in the field. N-n-Butyl haloperidol iodide (F2) is a new compound synthesized by our group. A series of previous studies have shown that

References

[1]  F.-F. Gao, G.-G. Shi, J.-H. Zheng, and B. Liu, “Protective effects on N-n-butyl haloperidol iodide on myocardial ischemia-reperfusion injury in rabbits,” Chinese Journal of Physiology, vol. 47, no. 2, pp. 61–66, 2004.
[2]  Y. Zhang, G. Shi, J. Zheng et al., “The protective effects of N-n-butyl haloperidol iodide on myocardial ischemia-reperfusion injury in rats by inhibiting Egr-1 overexpression,” Cellular Physiology and Biochemistry, vol. 20, no. 5, pp. 639–648, 2007.
[3]  Y.-M. Zhang, G.-G. Shi, Z. Tang et al., “Effects of N-n-butyl haloperidol iodide on myocardial ischemia/reperfusion injury and Egr-1 expression in rat,” Acta Biochimica et Biophysica Sinica, vol. 38, no. 6, pp. 435–441, 2006.
[4]  Z.-Q. Huang, G.-G. Shi, J.-H. Zheng, and B. Liu, “Effects of N-n-butyl haloperidol iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current,” Acta Pharmacologica Sinica, vol. 24, no. 8, pp. 757–763, 2003.
[5]  Y. Zhang, G. Shi, J. Zheng et al., “The protective effect of Egr-1 antisense oligodeoxyribonucleotide on myocardial injury induced by ischemia-reperfusion and hypoxia-reoxygenation,” Cellular Physiology and Biochemistry, vol. 22, no. 5-6, pp. 645–652, 2008.
[6]  Y. Zhou, Y. Zhang, F. Gao et al., “N-n-butyl haloperidol iodide protects cardiac microvascular endothelial cells from hypoxia/reoxygenation injury by down-regulating egr-1 expression,” Cellular Physiology and Biochemistry, vol. 26, no. 6, pp. 839–848, 2010.
[7]  Z. Huang, H. Li, F. Guo et al., “Egr-1, the potential target of calcium channel blockers in cardioprotection with ischemia/reperfusion injury in rats,” Cellular Physiology and Biochemistry, vol. 24, no. 1-2, pp. 17–24, 2009.
[8]  J.-Z. Wang, C.-Y. Cai, Y.-M. Zhang et al., “N-n-Butyl haloperidol iodide protects against hypoxia/reoxygenation-induced cardiomyocyte injury by modulating protein kinase C activity,” Biochemical Pharmacology, vol. 79, no. 10, pp. 1428–1436, 2010.
[9]  T. Matsui, S.-I. Yamagishi, K. Nakamura, and H. Inoue, “Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium channel-blocking properties, inhibits tumour necrosis factor-α-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation,” Journal of International Medical Research, vol. 35, no. 6, pp. 886–891, 2007.
[10]  S.-I. Yamagishi, K. Nakamura, and T. Matsui, “Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine,” Current Medicinal Chemistry, vol. 15, no. 2, pp. 172–177, 2008.
[11]  R. Berkels, D. Taubert, A. Rosenkranz, and R. R?sen, “Vascular protective effects of dihydropyridine calcium antagonists. Involvement of endothelial nitric oxide,” Pharmacology, vol. 69, no. 4, pp. 171–176, 2003.
[12]  A. Clerk and P. H. Sugden, “Signaling through the extracellular signal-regulated kinase 1/2 cascade in cardiac myocytes,” Biochemistry and Cell Biology, vol. 82, no. 6, pp. 603–609, 2004.
[13]  D.-Y. Li, L. Tao, H. Liu, T. A. Christopher, B. L. Lopez, and X. L. Ma, “Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion,” Apoptosis, vol. 11, no. 6, pp. 923–930, 2006.
[14]  L. O. Murphy and J. Blenis, “MAPK signal specificity: the right place at the right time,” Trends in Biochemical Sciences, vol. 31, no. 5, pp. 268–275, 2006.
[15]  L. Mao, L. Yang, Q. Tang, S. Samdani, G. Zhang, and J. Q. Wang, “The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons,” Journal of Neuroscience, vol. 25, no. 10, pp. 2741–2752, 2005.
[16]  D. C. Andersson, J. Fauconnier, T. Yamada et al., “Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes,” Journal of Physiology, vol. 589, no. 7, pp. 1791–1801, 2011.
[17]  S. J. Cook and F. McCormick, “Inhibition by cAMP of Ras-dependent activation of Raf,” Science, vol. 262, no. 5136, pp. 1069–1072, 1993.
[18]  P. Crespo, T. G. Cachero, N. Xu, and J. S. Gutkind, “Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. Evidence for a βγ-dependent activation and a Gα(s)-cAMP-mediated inhibition,” Journal of Biological Chemistry, vol. 270, no. 42, pp. 25259–25265, 1995.
[19]  J. M. Schmitt and P. J. S. Stork, “Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1,” Molecular and Cellular Biology, vol. 21, no. 11, pp. 3671–3683, 2001.
[20]  Y. Wan and X.-Y. Huang, “Analysis of the G(s)/mitogen-activated protein kinase pathway in mutant S49 cells,” Journal of Biological Chemistry, vol. 273, no. 23, pp. 14533–14537, 1998.
[21]  M. C. MacNicol and A. M. MacNicol, “Nerve growth factor-stimulated B-Raf catalytic activity is refractory to inhibition by cAMP-dependent protein kinase,” Journal of Biological Chemistry, vol. 274, no. 19, pp. 13193–13197, 1999.
[22]  J. Zheng, H. Shen, Y. Xiong, X. Yang, and J. He, “The β1-adrenergic receptor mediates extracellular signal-regulated kinase activation via Gαs,” Amino Acids, vol. 38, no. 1, pp. 75–84, 2010.
[23]  W.-Z. Zhu, M. Zheng, W. J. Koch, R. J. Lefkowitz, B. K. Kobilka, and R.-P. Xiao, “Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1607–1612, 2001.
[24]  W.-J. Xing, F.-J. Kong, G.-W. Li et al., “Calcium-sensing receptors induce apoptosis during simulated ischaemia-reperfusion in Buffalo rat liver cells,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 9, pp. 605–612, 2011.
[25]  S. Yamamoto, M. Yamane, O. Yoshida et al., “Activations of mitogen-activated protein kinases and regulation of their downstream molecules after rat lung transplantation from donors after cardiac death,” Transplantation Proceedings, vol. 43, no. 10, pp. 3628–3633, 2011.
[26]  H.-P. Tian, B.-S. Huang, J. Zhao, X.-H. Hu, J. Guo, and L.-X. Li, “Non-receptor tyrosine kinase Src is required for ischemia-stimulated neuronal cell proliferation via Raf/ERK/CREB activation in the dentate gyrus,” BMC Neuroscience, vol. 10, article 139, 2009.
[27]  M. Alderliesten, M. De Graauw, J. Oldenampsen et al., “Extracellular signal-regulated kinase activation during renal ischemia/reperfusion mediates focal adhesion dissolution and renal injury,” American Journal of Pathology, vol. 171, no. 2, pp. 452–462, 2007.
[28]  G. Milano, L. K. Von Segesser, S. Morel et al., “Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia,” Experimental Biology and Medicine, vol. 235, no. 3, pp. 401–410, 2010.
[29]  O. F. Bueno and J. D. Molkentin, “Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death,” Circulation Research, vol. 91, no. 9, pp. 776–781, 2002.
[30]  S.-M. Kang, S. Lim, H. Song et al., “Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes,” European Journal of Pharmacology, vol. 535, no. 1–3, pp. 212–219, 2006.
[31]  J. N. Tsoporis, S. Izhar, H. Leong-Poi, J.-F. Desjardins, H. J. Huttunen, and T. G. Parker, “S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction,” Circulation Research, vol. 106, no. 1, pp. 93–101, 2010.
[32]  J. Liu, W. Mao, B. Ding, and C.-S. Liang, “ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes,” American Journal of Physiology, vol. 295, no. 5, pp. H1956–H1965, 2008.
[33]  X. Yang, M. V. Cohen, and J. M. Downey, “Mechanism of cardioprotection by early ischemic preconditioning,” Cardiovascular Drugs and Therapy, vol. 24, no. 3, pp. 225–234, 2010.
[34]  J.-Z. Juan-Zhang, H.-J. Bian, X.-X. Li et al., “ERK-MAPK signaling opposes rho-kinase to reduce cardiomyocyte apoptosis in heart ischemic preconditioning,” Molecular Medicine, vol. 16, no. 7-8, pp. 307–315, 2010.
[35]  A. Hempel, C. Lindschau, C. Maasch et al., “Calcium antagonists ameliorate ischemia-induced endothelial cell permeability by inhibiting protein kinase C,” Circulation, vol. 99, no. 19, pp. 2523–2529, 1999.
[36]  O. Eickelberg, M. Roth, R. Mussmann et al., “Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-κB in primary human vascular smooth muscle cells,” Circulation, vol. 99, no. 17, pp. 2276–2282, 1999.
[37]  L.-W. Lo, J.-J. Cheng, J.-J. Chiu, B.-S. Wung, Y.-C. Liu, and D. L. Wang, “Endothelial exposure to hypoxia induces Egr-1 expression involving PKCα-mediated Ras/Raf-1/ERK1/2 pathway,” Journal of Cellular Physiology, vol. 188, no. 3, pp. 304–312, 2001.
[38]  Y. Huang, F. Gao, Y. Zhang et al., “N-n-Butyl haloperidol iodide inhibits the augmented Na+/Ca2+ exchanger currents and L-type Ca2+ current induced by hypoxia/reoxygenation or H2O2 in cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 421, no. 1, pp. 86–90, 2012.
[39]  K. Josefsen, L. R. S?rensen, K. Buschard, and M. Birkenbach, “Glucose induces early growth response gene (Egr-1) expression in pancreatic beta cells,” Diabetologia, vol. 42, no. 2, pp. 195–203, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133