1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is an environmental toxin which selectively induces oxidative damage and mitochondrial and proteasomal dysfunctions to dopaminergic neurons in the substantia nigra leading to Parkinsonian syndrome in animal models and humans. MPTP is one of the most widely used in vitro models to investigate the pathophysiology of Parkinson's disease (PD) and, screen for novel therapeutic compounds that can slow down or ameliorate this progressive degenerative disease. We investigated the therapeutic effect of pomegranate juice extracts (PJE), Helow, Malasi, Qusum, and Hamadh against MPTP-induced neurotoxicity in primary human neurons by examining extracellular LDH activity, intracellular NAD+ and ATP levels, and endogenous antioxidant levels including lipid peroxidation products, catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, and reduced glutathione (GSH) levels. MPTP induced a reduction in SOD and GPx activities and intracellular NAD+, ATP, and GSH levels parallel to an increase in extracellular LDH and CAT activities, although lipid peroxidation was not altered. We report that helow and malasi can ameliorate MPTP-induced neurotoxicity by attenuating the observed changes in redox function to a greater extent than qusum and hamedh. Selected PJE varieties may exhibit properties which may be of therapeutic value to slow down age-related degeneration and neurodegeneration in particular. 1. Introduction As the ageing population continues to grow at an alarming rate, the likelihood of people developing debilitating neurodegenerative deficits such as Parkinson’s disease (PD) is growing rapidly. PD represents the second most common neurological disorder after Alzheimer’s disease (AD), and it affects 2% of the population over the age of 60. PD is characterised by the chronic and progressive loss of dopaminergic neurons in the substantia nigra [1]. Although the etiology of PD is not yet known, current studies have suggested that oxidative stress may be a major player [2]. An imbalance between the formation of free radicals and reactive oxygen species (ROS) and the body’s endogenous antioxidant defense mechanisms has also been implicated in the pathogenesis of other neurodegenerative diseases such as AD, Huntington’s disease (HD), Pick’s disease, amyotrophic lateral sclerosis (ALS), epilepsy, schizophrenia, and hypoxic-ischemic brain injury. ROS can induce oxidative damage to lipids, nucleic acids, and proteins, promote abnormal aggregation of cytoskeletal proteins, inactivate major metabolic
References
[1]
C. Lo Bianco, B. L. Schneider, M. Bauer et al., “Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17510–17515, 2004.
[2]
S. Mandel, E. Grünblatt, P. Riederer, M. Gerlach, Y. Levites, and M. B. H. Youdim, “Neuroprotective strategies in Parkinson's disease: an update on progress,” CNS Drugs, vol. 17, no. 10, pp. 729–762, 2003.
[3]
P. G. Butterfield, “Environment: seeking clues to Parkinson's disease.,” Reflections, vol. 22, no. 3, pp. 14–15, 1996.
[4]
W. R. Markesbery, “Neuropathological criteria for the diagnosis of Alzheimer's disease,” Neurobiology of Aging, vol. 18, supplement 4, pp. S13–S19, 1997.
[5]
M. J. Ball and G. H. Murdoch, “Neuropathological criteria for the diagnosis of Alzheimer's disease: are we really ready yet?” Neurobiology of Aging, vol. 18, supplement 4, pp. S3–S12, 1997.
[6]
H. Kumar, S. Koppula, I. S. Kim, S. V. More, B. W. Kim, and D. K. Choi, “Nuclear factor erythroid 2—related factor 2 signaling in Parkinson disease: a promising multi therapeutic target against oxidative stress, neuroinflammation and cell death,” CNS and Neurological Disorders, vol. 11, no. 8, pp. 1015–1029, 2012.
[7]
M. H. Yan, X. Wang, and X. Zhu, “Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease,” Free Radical Biology and Medicine, vol. 62, pp. 90–101, 2013.
[8]
R. Perfeito, T. Cunha-Oliveira, and A. C. Rego, “Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse,” Free Radical Biology and Medicine, vol. 53, no. 9, pp. 1791–1806, 2012.
[9]
H. J. Jeong, D. W. Kim, S. J. Woo et al., “Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model,” Molecules and Cells, vol. 33, no. 5, pp. 471–478, 2012.
[10]
W. Chien, T. Lee, S. Hung, K. Kang, and W. Fu, “Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1,” Journal of Neurochemistry, vol. 117, no. 4, pp. 643–653, 2011.
[11]
H. Bayir, A. A. Kapralov, J. Jiang et al., “Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c. Protection against apoptosis versus delayed oxidative stress in Parkinson disease,” The Journal of Biological Chemistry, vol. 284, no. 23, pp. 15951–15969, 2009.
[12]
C. Henchcliffe and F. M. Beal, “Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis,” Nature Clinical Practice Neurology, vol. 4, no. 11, pp. 600–609, 2008.
[13]
R. J. Bloomer, B. K. Schilling, R. E. Karlage, M. S. Ledoux, R. F. Pfeiffer, and J. Callegari, “Effect of resistance training on blood oxidative stress in Parkinson disease,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1385–1389, 2008.
[14]
A. Nunomura, P. I. Moreira, H. G. Lee et al., “Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases,” CNS and Neurological Disorders, vol. 6, no. 6, pp. 411–423, 2007.
[15]
C. Battisti, P. Formichi, E. Radi, and A. Federico, “Oxidative-stress-induced apoptosis in PBLs of two patients with Parkinson disease secondary to alpha-synuclein mutation,” Journal of the Neurological Sciences, vol. 267, no. 1-2, pp. 120–124, 2008.
[16]
N. Yamamoto, H. Sawada, Y. Izumi et al., “Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease,” The Journal of Biological Chemistry, vol. 282, no. 7, pp. 4364–4372, 2007.
[17]
M. Ebadi and S. Sharma, “Metallothioneins 1 and 2 attenuate peroxynitrite-induced oxidative stress in Parkinson disease,” Experimental Biology and Medicine, vol. 231, no. 9, pp. 1576–1583, 2006.
[18]
G. A. Veech, J. Dennis, P. M. Keeney, et al., “Disrupted mitochondrial electron transport function increases expression of anti-apoptotic bcl-2 and bcl-X(L) proteins in SH-SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stress,” Journal of Neuroscience Research, vol. 61, no. 6, pp. 693–700, 2000.
[19]
M. E. González-Fraguela, “Indicators of oxidative stress and the effect of antioxidant treatment in patients with primary Parkinson's disease,” Revista de Neurologia, vol. 26, no. 149, pp. 28–33, 1998.
[20]
R. Castellani, M. A. Smith, P. L. Richey, and G. Perry, “Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease,” Brain Research, vol. 737, no. 1-2, pp. 195–200, 1996.
[21]
J. W. Langston and P. A. Ballard Jr., “Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,” The New England Journal of Medicine, vol. 309, no. 5, p. 310, 1983.
[22]
R. S. Burns, C. C. Chiueh, S. P. Markey, M. H. Ebert, D. M. Jacobowitz, and I. J. Kopin, “A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 14 I, pp. 4546–4550, 1983.
[23]
J. W. Langston and P. Ballard, “Parkinsonism induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease,” Canadian Journal of Neurological Sciences, vol. 11, supplement 1, pp. 160–165, 1984.
[24]
A. R. Crossman, D. Peggs, S. Boyce, M. R. Luquin, and M. A. Sambrook, “Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey,” Neuropharmacology, vol. 28, no. 11, pp. 1271–1273, 1989.
[25]
K. Chiba, A. Trevor, and N. Castagnoli Jr., “Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase,” Biochemical and Biophysical Research Communications, vol. 120, no. 2, pp. 574–578, 1984.
[26]
T. P. Singer, N. Castagnoli Jr., R. R. Ramsay, and A. J. Trevor, “Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Journal of Neurochemistry, vol. 49, no. 1, pp. 1–8, 1987.
[27]
M. F. D. Notter, I. Irwin, J. W. Langston, and D. M. Gash, “Neurotoxicity of MPTP and MPP+ in vitro: characterization using specific cell lines,” Brain Research, vol. 456, no. 2, pp. 254–262, 1988.
[28]
P. Langley, “Why a pomegranate?” British Medical Journal, vol. 321, no. 7269, pp. 1153–1154, 2000.
[29]
A. Vidal, A. Fallarero, B. R. Pe?a et al., “Studies on the toxicity of Punica granatum L. (Punicaceae) whole fruit extracts,” Journal of Ethnopharmacology, vol. 89, no. 2-3, pp. 295–300, 2003.
[30]
B. B. Aggarwal and S. Shishodia, “Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: reasoning for seasoning,” Annals of the New York Academy of Sciences, vol. 1030, pp. 434–441, 2004.
[31]
F. Ashoori, S. Suzuki, J. H. Z. Zhou, N. Isshiki, and Y. Miyachi, “Involvement of lipid peroxidation in necrosis of skin flaps and its suppression by ellagic acid,” Plastic and Reconstructive Surgery, vol. 94, no. 7, pp. 1027–1037, 1994.
[32]
M. Hirose, R. Hasegawa, J. Kimura et al., “Inhibitory effects of 1-O-hexyl-2,3,5-trimethylhydroquinone (HTHQ), green tea catechins and other antioxidants on 2-amino-6-methyldipyrido[1,2-a:3',2'-d] (Glu-P-1)-induced rat hepatocarcinogenesis and dose-dependent inhibition by HTHQ of lesion induction by Glu-P-1 or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx),” Carcinogenesis, vol. 16, no. 12, pp. 3049–3055, 1995.
[33]
N. D. Kim, R. Mehta, W. Yu et al., “Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer,” Breast Cancer Research and Treatment, vol. 71, no. 3, pp. 203–217, 2002.
[34]
M. I. Gil, F. A. Tomas-Barberan, B. Hess-Pierce, D. M. Holcroft, and A. A. Kader, “Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4581–4589, 2000.
[35]
M. Aviram, “Pomegranate juice as a major source for polyphenolic flavonoids and it is most potent antioxidant against LDL oxidation and atherosclerosis,” in Proceedings of the 11th Biennial Meeting of the Society for Free Radical Research International, pp. 523–528, July 2002.
[36]
M. Aviram, “Pomegranate juice as a major source for polyphenolic flavonoids and it is most potent antioxidant against LDL oxidation and atherosclerosis,” Free Radical Biology and Medicine, vol. 33, pp. S139–S140, 2002.
[37]
M. Aviram, M. Rosenblat, D. Gaitini et al., “Corrigendum to: pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation, Clinical Nutrition, vol. 23, pp. 423–433, 2004,” Clinical Nutrition, vol. 27, no. 4, p. 671, 2008.
[38]
M. Bandeira Sde, M. Bandeira Sde, S. Guedes Gda, L. J. da Fonseca, et al., “Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 819310, 13 pages, 2012.
[39]
A. Butterfield, A. M. Swomley, and R. Sultana, “Amyloid β-peptide (1-42)-induced oxidative stress in alzheimer disease: importance in disease pathogenesis and progression,” Antioxidants and Redox Signaling, vol. 19, no. 8, pp. 823–835, 2012.
[40]
J. Mori-Okamoto, Y. Otawara-Hamamoto, H. Yamato, and H. Yoshimura, “Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice,” Journal of Ethnopharmacology, vol. 92, no. 1, pp. 93–101, 2004.
[41]
M. Rosenblat and M. Aviram, “Antioxidants as targeted therapy: a special protective role for pomegranate and paraoxonases (PONs),” in Asymptomatic Atherosclerosis: Pathophysiology, Detection and Treatment, pp. 621–634, Humana Press, New Jersey, NJ, USA, 2010.
[42]
M. Rosenblat, T. Hayek, and M. Aviram, “Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages,” Atherosclerosis, vol. 187, no. 2, pp. 363–371, 2006.
[43]
M. Rosenblat, N. Volkova, and M. Aviram, “Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2,” Atherosclerosis, vol. 212, no. 1, pp. 86–92, 2010.
[44]
V. R. Sagar and P. S. Kumar, “Recent advances in drying and dehydration of fruits and vegetables: a review,” Journal of Food Science and Technology, vol. 47, no. 1, pp. 15–26, 2010.
[45]
B. Bchir, S. Besbes, H. Attia, and C. Blecker, “Osmotic dehydration of pomegranate seeds (Punica granatum l.): effect of freezing pre-treatment,” Journal of Food Process Engineering, vol. 35, no. 3, pp. 335–354, 2012.
[46]
K. I. Berker, F. A. O. Olgun, D. Ozyurt, et al., “Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants,” Journal of Agricultural and Food Chemistry, vol. 61, no. 20, pp. 4783–4791, 2013.
[47]
G. J. Guillemin, G. Smythe, O. Takikawa, and B. J. Brew, “Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons,” Glia, vol. 49, no. 1, pp. 15–23, 2005.
[48]
G. J. Guillemin, K. M. Cullen, C. K. Lim et al., “Characterization of the kynurenine pathway in human neurons,” Journal of Neuroscience, vol. 27, no. 47, pp. 12884–12892, 2007.
[49]
C. Bernofsky and M. Swan, “An improved cycling assay for nicotinamide adenine dinucleotide,” Analytical Biochemistry, vol. 53, no. 2, pp. 452–458, 1973.
[50]
R. S. Grant and V. Kapoor, “Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates,” Journal of Neurochemistry, vol. 70, no. 4, pp. 1759–1763, 1998.
[51]
J. Y. Koh and D. W. Choi, “Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay,” Journal of Neuroscience Methods, vol. 20, no. 1, pp. 83–90, 1987.
[52]
M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 53, pp. 452–458, 1976.
[53]
V. Cordesse, T. Jametal, C. Guy, et al., “Analysis of clinical pathway in changing and disabling neurological diseases,” Revue Neurologique, vol. 169, no. 6-7, pp. 476–484, 2013.
[54]
P. J. Houghton and M. Howes, “Natural products and derivatives affecting neurotransmission relevant to Alzheimer's and Parkinson's disease,” NeuroSignals, vol. 14, no. 1-2, pp. 6–22, 2005.
[55]
R. B. Mythri, G. Harish, and M. M. Bharath, “Therapeutic potential of natural products in Parkinson's disease,” Recent Patents on Endocrine, Metabolic and Immune Drug Discovery, vol. 6, no. 3, pp. 181–200, 2012.
[56]
R. E. Hartman, A. Shah, A. M. Fagan et al., “Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 24, no. 3, pp. 506–515, 2006.
[57]
S. P. Markey, J. N. Johannessen, and C. C. Chiueh, “Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism,” Nature, vol. 311, no. 5985, pp. 464–467, 1984.
[58]
P. W. Ho, W. Je. Ho, L. Liu, et al., “Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease,” Translational Neurodegeneration, vol. 1, no. 1, article 3, 2012.
[59]
R. K. Kutty, G. Santostasi, J. Horng, and G. Krishna, “MPTP-induced ATP depletion and cell death in neuroblastoma X glioma hybrid NG 108-15 cells: protection by glucose and sensitization by tetraphenylborate,” Toxicology and Applied Pharmacology, vol. 107, no. 2, pp. 377–388, 1991.
[60]
I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, and A. Milzani, “Biomarkers of oxidative damage in human disease,” Clinical Chemistry, vol. 52, no. 4, pp. 601–623, 2006.
[61]
V. Shulaev and D. J. Oliver, “Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research,” Plant Physiology, vol. 141, no. 2, pp. 367–372, 2006.
[62]
C. Thiffault, N. Aumont, R. Quirion, and J. Poirier, “Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain,” Journal of Neurochemistry, vol. 65, no. 6, pp. 2725–2733, 1995.
[63]
S. Kar and M. Kavdia, “Endothelial NO and O2.? radical dot-production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation,” Free Radical Biology and Medicine, vol. 63, pp. 161–174, 2013.
[64]
L. C. Ribeiro, L. Rodrigues, A. Quincozes-Santos, et al., “Caloric restriction improves basal redox parameters in hippocampus and cerebral cortex of Wistar rats,” Brain Research, vol. 1472, pp. 11–19, 2012.
[65]
I. Dokic, C. Hartmann, C. Herold-Mende, et al., “Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress,” Glia, vol. 60, no. 11, pp. 1785–1800, 2012.
[66]
L. A. Esposito, J. E. Kokoszka, K. G. Waymire, B. Cottrell, G. R. MacGregor, and D. C. Wallace, “Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene,” Free Radical Biology and Medicine, vol. 28, no. 5, pp. 754–766, 2000.
[67]
Y. Inoue, L. Tran, M. Kamakura et al., “Oxidative stress response in yeast: glutathione peroxidase of Hansenula mrakii is bound to the membrane of both mitochondria and cytoplasm,” Biochimica et Biophysica Acta, vol. 1245, no. 3, pp. 325–330, 1995.
[68]
J. H. Doroshow, “Glutathione peroxidase and oxidative stress,” Toxicology Letters, vol. 82-83, pp. 395–398, 1995.
[69]
D. G. Hom, D. Jiang, E. Hong, J. Q. Mo, and J. K. Andersen, “Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity,” Molecular Brain Research, vol. 46, no. 1-2, pp. 154–160, 1997.
[70]
D. A. Drechsel, L. Liang, and M. Patel, “1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons,” Toxicology and Applied Pharmacology, vol. 220, no. 3, pp. 341–348, 2007.
[71]
J. Hirrlinger, J. M. Gutterer, L. Kussmaul, B. Hamprecht, and R. Dringen, “Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species,” Developmental Neuroscience, vol. 22, no. 5-6, pp. 384–392, 2000.
[72]
J. Hirrlinger, B. Hamprecht, and R. Dringen, “Application and modulation of a permanent hydrogen peroxide-induced oxidative stress to cultured astroglial cells,” Brain Research Protocols, vol. 4, no. 2, pp. 223–229, 1999.
[73]
J. Croitoru-Lamoury, G. J. Guillemin, F. D. Boussin et al., “Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNFα and IFNγ in CXCR4 and CCR5 modulation,” Glia, vol. 41, no. 4, pp. 354–370, 2003.
[74]
G. J. Guillemin, J. Croitoru-Lamoury, D. Dormont, P. J. Armati, and B. J. Brew, “Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes,” Glia, vol. 41, no. 4, pp. 371–381, 2003.
[75]
K. S. Panickar and S. Jang, “Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia,” Recent Patents on Food, Nutrition and Agriculture, vol. 5, no. 2, pp. 128–143, 2013.
[76]
K. S. Panickar, “Bioactive components of plant products including polyphenols exert neuroprotective effects and benefit neural function,” Central Nervous System Agents in Medicinal Chemistry, vol. 13, no. 1, article 2, 2013.
[77]
L. Tavares, I. Figueira, G. J. McDougall, et al., “Neuroprotective effects of digested polyphenols from wild blackberry species,” European Journal of Nutrition, vol. 52, no. 1, pp. 225–236, 2013.
[78]
M. M. Essa, R. K. Vijayan, G. Castellano-Gonzalez, et al., “Neuroprotective effect of natural products against Alzheimer's disease,” Neurochemical Research, vol. 37, no. 9, pp. 1829–1842, 2012.
[79]
S. Petti and C. Scully, “Polyphenols, oral health and disease: a review,” Journal of Dentistry, vol. 37, no. 6, pp. 413–423, 2009.
[80]
N. P. Seeram, Y. Zhang, R. McKeever et al., “Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects,” Journal of Medicinal Food, vol. 11, no. 2, pp. 390–394, 2008.
[81]
A. Basu and K. Penugonda, “Pomegranate juice: a heart-healthy fruit juice,” Nutrition Reviews, vol. 67, no. 1, pp. 49–56, 2009.