全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neuroprotective Effects of Hesperidin, a Plant Flavanone, on Rotenone-Induced Oxidative Stress and Apoptosis in a Cellular Model for Parkinson’s Disease

DOI: 10.1155/2013/102741

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rotenone a widely used pesticide that inhibits mitochondrial complex I has been used to investigate the pathobiology of PD both in vitro and in vivo. Studies have shown that the neurotoxicity of rotenone may be related to its ability to generate reactive oxygen species (ROS), leading to neuronal apoptosis. The current study was carried out to investigate the neuroprotective effects of hesperidin, a citrus fruit flavanol, against rotenone-induced apoptosis in human neuroblastoma SK-N-SH cells. We assessed cell death, mitochondrial membrane potential, ROS generation, ATP levels, thiobarbituric acid reactive substances, reduced glutathione (GSH) levels, and the activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) using well established assays. Apoptosis was determined in normal, rotenone, and hesperidin treated cells, by measuring the protein expression of cytochrome c (cyt c), caspases 3 and 9, Bax, and Bcl-2 using the standard western blotting technique. The apoptosis in rotenone-induced SK-N-SH cells was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, the depletion of GSH, enhanced activities of enzymatic antioxidants, upregulation of Bax, cyt c, and caspases 3 and 9, and downregulation of Bcl-2, which were attenuated in the presence of hesperidin. Our data suggests that hesperidin exerts its neuroprotective effect against rotenone due to its antioxidant, maintenance of mitochondrial function, and antiapoptotic properties in a neuroblastoma cell line. 1. Introduction Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is characterised by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of dopamine in the striatum, the main projection area of the substantia nigra. Numerous studies using postmortem human tissues, animal models, and neuronal cell lines have reported the involvement of several pathological mechanisms responsible for the loss of dopaminergic neurons in PD, including elevated levels of iron, ubiquitin-proteasome system (UPS) dysfunction and impairment, altered calcium homeostasis, excitotoxicity, inflammation, oxidative stress, and release of apoptotic factors [1, 2]. Rotenone is a naturally occurring lipophilic compound exhibiting insecticide-like properties and is obtained from the roots of certain plants species (Derris and Lonchocarpus) [3]. It is one of the common neurotoxic agents used to examine the development of PD in animal models [4] and induces

References

[1]  W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003.
[2]  V. Anantharam, E. Lehrmann, A. Kanthasamy et al., “Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease,” Neurochemistry International, vol. 50, no. 6, pp. 834–847, 2007.
[3]  P. Jenner, “Parkinson's disease, pesticides and mitochondrial dysfunction,” Trends in Neurosciences, vol. 24, no. 5, pp. 245–246, 2001.
[4]  S. Przedborski and H. Ischiropoulos, “Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease,” Antioxidants and Redox Signaling, vol. 7, no. 5-6, pp. 685–693, 2005.
[5]  K. Radad, W.-D. Rausch, and G. Gille, “Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration,” Neurochemistry International, vol. 49, no. 4, pp. 379–386, 2006.
[6]  G. Wang, C. Qi, G.-H. Fan, H.-Y. Zhou, and S.-D. Chen, “PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone,” FEBS Letters, vol. 579, no. 18, pp. 4005–4011, 2005.
[7]  M. F. Molina-Jiménez, M. I. Sánchez-Reus, D. Andres, M. Cascales, and J. Benedi, “Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells,” Brain Research, vol. 1009, no. 1-2, pp. 9–16, 2004.
[8]  J. T. Greenamyre, T. B. Sherer, R. Betarbet, and A. V. Panov, “Complex I and Parkinson's disease,” IUBMB Life, vol. 52, no. 3–5, pp. 135–141, 2002.
[9]  M. Fukui, H. J. Choi, and B. T. Zhu, “Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death,” Free Radical Biology and Medicine, vol. 49, no. 5, pp. 800–813, 2010.
[10]  O. Benavente-Garcisa, J. Castillo, F. R. Marin, et al., “Uses and properties of citrus flavonoids,” Journal of Agricultural and Food Chemistry, vol. 45, pp. 4505–4515, 1997.
[11]  A. Crozier, I. B. Jaganath, and M. N. Clifford, “Dietary phenolics: chemistry, bioavailability and effects on health,” Natural Product Reports, vol. 26, no. 8, pp. 1001–1043, 2009.
[12]  M.-C. Chen, Y. I. Ye, J. I. Guang, and L. I. U. Jian-Wen, “Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells,” Journal of Agricultural and Food Chemistry, vol. 58, no. 6, pp. 3330–3335, 2010.
[13]  J. Cho, “Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin,” Archives of Pharmacal Research, vol. 29, no. 8, pp. 699–706, 2006.
[14]  H. J. Park, D.-H. Shin, W. J. Chung et al., “Epigallocatechin gallate reduces hypoxia-induced apoptosis in human hepatoma cells,” Life Sciences, vol. 78, no. 24, pp. 2826–2832, 2006.
[15]  T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983.
[16]  S. Karthikeyan, G. Kanimozhi, N. R. Prasad, and R. Mahalakshmi, “Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro,” Toxicology In Vitro, vol. 25, no. 7, pp. 1366–1375, 2011.
[17]  W. G. Niehaus Jr. and B. Samuelsson, “Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation,” European Journal of Biochemistry, vol. 6, no. 1, pp. 126–130, 1968.
[18]  P. Kakkar, B. Das, and P. N. Viswanathan, “A modified spectrophotometric assay of superoxide dismutase,” Indian Journal of Biochemistry and Biophysics, vol. 21, no. 2, pp. 130–132, 1984.
[19]  H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, no. C, pp. 121–126, 1984.
[20]  J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, “Selenium: biochemical role as a component of glatathione peroxidase,” Science, vol. 179, no. 4073, pp. 588–590, 1973.
[21]  G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959.
[22]  N. Rajendra Prasad, A. Karthikeyan, S. Karthikeyan, and B. Venkata Reddy, “Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line,” Molecular and Cellular Biochemistry, vol. 349, no. 1-2, pp. 11–19, 2011.
[23]  J. L. York, L. C. Maddox, P. Zimniak, T. E. McHugh, and D. F. Grant, “Reduction of MTT by glutathione S-transferase,” BioTechniques, vol. 25, no. 4, pp. 622–624, 1998.
[24]  M. F. Beal, “Energetics in the pathogenesis of neurodegenerative diseases,” Trends in Neurosciences, vol. 23, no. 7, pp. 298–304, 2000.
[25]  Y. Moon, K. H. Lee, J.-H. Park, D. Geum, and K. Kim, “Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10,” Journal of Neurochemistry, vol. 93, no. 5, pp. 1199–1208, 2005.
[26]  T. B. Sherer, R. Betarbet, C. M. Testa et al., “Mechanism of toxicity in rotenone models of Parkinson's disease,” Journal of Neuroscience, vol. 23, no. 34, pp. 10756–10764, 2003.
[27]  J. F. Turrens, A. Alexandre, and A. L. Lehninger, “Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria,” Archives of Biochemistry and Biophysics, vol. 237, no. 2, pp. 408–414, 1985.
[28]  J. St-Pierre, J. A. Buckingham, S. J. Roebuck, and M. D. Brand, “Topology of superoxide production from different sites in the mitochondrial electron transport chain,” Journal of Biological Chemistry, vol. 277, no. 47, pp. 44784–44790, 2002.
[29]  G. Fiskum, R. E. Rosenthal, V. Vereczki et al., “Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 4, pp. 347–352, 2004.
[30]  S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, and M. G. Simic, “Flavonoids as antioxidants,” Journal of the American Chemical Society, vol. 116, no. 11, pp. 4846–4851, 1994.
[31]  V. Gaur and A. Kumar, “Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction,” Pharmacological Reports, vol. 62, no. 4, pp. 635–648, 2010.
[32]  D. S. Cassarino, C. P. Fall, R. H. Swerdlow et al., “Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1362, no. 1, pp. 77–86, 1997.
[33]  X.-X. Li, G.-R. He, X. Mu et al., “Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria,” European Journal of Pharmacology, vol. 674, no. 2-3, pp. 227–233, 2012.
[34]  Y. Eguchi, A. Srinivasan, K. J. Tomaselli, S. Shimizu, and Y. Tsujimoto, “ATP-dependent steps in apoptotic signal transduction,” Cancer Research, vol. 59, no. 9, pp. 2174–2181, 1999.
[35]  M. Watabe and T. Nakaki, “ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells,” Neuropharmacology, vol. 52, no. 2, pp. 536–541, 2007.
[36]  J. S. Isenberg and J. E. Klaunig, “Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells,” Toxicological Sciences, vol. 53, no. 2, pp. 340–351, 2000.
[37]  W. Pei, A. K. F. Liou, and J. Chen, “Two caspase-mediated apoptotic pathways induced by rotenone toxicity in cortical neuronal cells,” The FASEB Journal, vol. 17, no. 3, pp. 520–522, 2003.
[38]  A. Panov, S. Dikalov, N. Shalbuyeva, G. Taylor, T. Sherer, and J. T. Greenamyre, “Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication,” Journal of Biological Chemistry, vol. 280, no. 51, pp. 42026–42035, 2005.
[39]  T. Kaufmann, S. Schlipf, J. Sanz, K. Neubert, R. Stein, and C. Borner, “Characterization of the signal that directs Bcl-xL, but not Bcl-2, to the mitochondrial outer membrane,” Journal of Cell Biology, vol. 160, no. 1, pp. 53–64, 2003.
[40]  X. Jiang and X. Wang, “Cytochrome C-mediated apoptosis,” Annual Review of Biochemistry, vol. 73, pp. 87–106, 2004.
[41]  E. Yang, J. Zha, J. Jockel, L. H. Boise, C. B. Thompson, and S. J. Korsmeyer, “Bad, a heterodimeric partner for Bcl-x(L), and Bcl-2, displaces Bax and promotes cell death,” Cell, vol. 80, no. 2, pp. 285–291, 1995.
[42]  J. C. Reed, “Double identity for proteins of the Bcl-2 family,” Nature, vol. 387, no. 6635, pp. 773–776, 1997.
[43]  S. J. Korsmeyer, “Bcl-2 initiates a new category of oncogenes: regulators of cell death,” Blood, vol. 80, no. 4, pp. 879–886, 1992.
[44]  P. De Sarno, S. A. Shestopal, T. D. King, A. Zmijewska, L. Song, and R. S. Jope, “Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11086–11093, 2003.
[45]  S. Desagher and J.-C. Martinou, “Mitochondria as the central control point of apoptosis,” Trends in Cell Biology, vol. 10, no. 9, pp. 369–377, 2000.
[46]  I. Budihardjo, H. Oliver, M. Lutter, X. Luo, and X. Wang, “Biochemical pathways of caspase activation during apoptosis,” Annual Review of Cell and Developmental Biology, vol. 15, pp. 269–290, 1999.
[47]  S. Kamisli, O. Ciftci, K. Kaya, et al., “Hesperidin protects brain and sciatic nerve tissues against cisplatin-induced oxidative, histological and electromyographical side effects in rats,” Toxicology and Industrial Health, 2013.
[48]  H. J. Heo, D.-O. Kim, S. C. Shin, M. J. Kim, B. G. Kim, and D.-H. Shin, “Effect of antioxidant flavanone, naringenin, from citrus junos on neuroprotection,” Journal of Agricultural and Food Chemistry, vol. 52, no. 6, pp. 1520–1525, 2004.
[49]  G. L. Viswanatha, H. Shylaja, K. S. Sandeep Rao, et al., “Hesperidin ameliorates immobilization-stress-induced behavioral and biochemical alterations and mitochondrial dysfunction in mice by modulating nitrergic pathway,” ISRN Pharmacology, vol. 2012, Article ID 479570, 8 pages, 2012.
[50]  D. Vauzour, K. Vafeiadou, C. Rice-Evans, R. J. Williams, and J. P. E. Spencer, “Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons,” Journal of Neurochemistry, vol. 103, no. 4, pp. 1355–1367, 2007.
[51]  S. S. Raza, M. M. Khan, A. Ahmad et al., “Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke,” Brain Research, vol. 1420, pp. 93–105, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413