β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia. 1. Introduction The World Health Organization has identified the hereditary red cell disorders as emerging diseases with high impact on public health systems in both Western and developing countries. Approximately 7% of the global population is carrier of such disorders, and 300,000–400,000 babies with severe forms of these diseases are born each year [1–3]. Severe hereditary hemoglobin disorders of red cells occur at highest frequency in tropical regions, but pop0ulation migrations have ensured that they are present and growing in prevalence in most Western countries. Hemoglobinopathies constitute the single most common monogenic defect worldwide, and among hemoglobin disorders, the thalassemias prominently contribute to [1–4]. β-thalassemias (β-thal) are characterized by the presence of mutations on beta-globin gene resulting in the absence or reduced synthesis of β-globin chains. This is responsible for unbalance in globin chain synthesis with unpaired α-chains aggregation. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced
References
[1]
D. J. Weatherall, “The global problem of genetic disease,” Annals of Human Biology, vol. 32, no. 2, pp. 117–122, 2005.
[2]
D. J. Weatherall and J. B. Clegg, “Inherited haemoglobin disorders: an increasing global health problem,” Bulletin of the World Health Organization, vol. 79, no. 8, pp. 704–712, 2001.
[3]
B. Modell and M. Darlison, “Global epidemiology of haemoglobin disorders and derived service indicators,” Bulletin of the World Health Organization, vol. 86, no. 6, pp. 480–487, 2008.
[4]
L. de Franceschi, M. D. Cappellini, and O. Olivieri, “Thrombosis and sickle cell disease,” Seminars in Thrombosis and Hemostasis, vol. 37, no. 3, pp. 226–236, 2011.
[5]
D. Rund and E. Rachmilewitz, “Beta-thalassemia,” The New England Journal of Medicine, vol. 353, no. 11, pp. 1135–1146, 2005.
[6]
F. Mannu, P. Arese, M. D. Cappellini et al., “Role of hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in β-thalassemia intermedia erythrocytes,” Blood, vol. 86, no. 5, pp. 2014–2020, 1995.
[7]
E. Shinar and E. A. Rachmilewitz, “Oxidative denaturation of red blood cells in thalassemia,” Seminars in Hematology, vol. 27, no. 1, pp. 70–82, 1990.
[8]
T. Repka, O. Shalev, R. Reddy et al., “Nonrandom association of free iron with membranes of sickle and β- thalassemic erythrocytes,” Blood, vol. 82, no. 10, pp. 3204–3210, 1993.
[9]
S. L. Schrier and N. Mohandas, “Globin-chain specificity of oxidation-induced changes in red blood cell membrane properties,” Blood, vol. 79, no. 6, pp. 1586–1592, 1992.
[10]
L. de Franceschi, O. Shalev, A. Piga et al., “Deferiprone therapy in homozygous human β-thalassemia removes erythrocyte membrane free iron and reduces KCl cotransport activity,” Journal of Laboratory and Clinical Medicine, vol. 133, no. 1, pp. 64–69, 1999.
[11]
A. Pantaleo, E. Ferru, G. Giribaldi et al., “Oxidized and poorly glycosylated band 3 is selectively phosphorylated by Syk kinase to form large membrane clusters in normal and G6PD-deficient red blood cells,” Biochemical Journal, vol. 418, no. 2, pp. 359–367, 2009.
[12]
L. de Franceschi, A. Biondani, F. Carta, et al., “PTPepsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells,” Proteomics, vol. 8, no. 22, pp. 4695–4708, 2008.
[13]
M. D. Scott, J. J. van den Berg, T. Repka, et al., “Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1706–1712, 1993.
[14]
L. de Franceschi, C. Tomelleri, A. Matte et al., “Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity,” Blood, vol. 118, no. 20, pp. 5652–5663, 2011.
[15]
E. Shinar, E. A. Rachmilewitz, and S. E. Lux, “Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia,” Journal of Clinical Investigation, vol. 83, no. 2, pp. 404–410, 1989.
[16]
A. Pantaleo, L. de Franceschi, E. Ferru, R. Vono, and F. Turrini, “Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells,” Journal of Proteomics, vol. 73, no. 3, pp. 445–455, 2010.
[17]
A. Siciliano, F. Turrini, M. Bertoldi et al., “Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease,” Blood Cells, Molecules, and Diseases, vol. 44, no. 4, pp. 233–242, 2010.
[18]
A. Iolascon, L. De Falco, F. Borgese et al., “A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis,” Haematologica, vol. 94, no. 8, pp. 1049–1059, 2009.
[19]
N. Mohandas and X. An, “New insights into function of red cell membrane proteins and their interaction with spectrin-based membrane skeleton,” Transfusion Clinique et Biologique, vol. 13, no. 1-2, pp. 29–30, 2006.
[20]
E. Ferru, K. Giger, A. Pantaleo et al., “Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3,” Blood, vol. 117, no. 22, pp. 5998–6006, 2011.
[21]
M. Westerman, A. Pizzey, J. Hirschman et al., “Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy,” The British Journal of Haematology, vol. 142, no. 1, pp. 126–135, 2008.
[22]
G. Hahalis, A. Kalogeropoulos, G. Terzis et al., “Premature atherosclerosis in non-transfusion-dependent β-thalassemia intermedia,” Cardiology, vol. 118, no. 3, pp. 159–163, 2011.
[23]
M. L. Harrison, P. Rathinavelu, P. Arese, R. L. Geahlen, and P. S. Low, “Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis,” Journal of Biological Chemistry, vol. 266, no. 7, pp. 4106–4111, 1991.
[24]
M. D. Cappellini, D. Tavazzi, L. Duca et al., “Metabolic indicators of oxidative stress correlate with haemichrome attachment to membrane, band 3 aggregation and erythrophagocytosis in β- thalassaemia intermedia,” The British Journal of Haematology, vol. 104, no. 3, pp. 504–512, 1999.
[25]
P. S. Low, “Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions,” Biochimica et Biophysica Acta, vol. 864, no. 2, pp. 145–167, 1986.
[26]
F. Tokumasu, R. M. Fairhurst, G. R. Ostera et al., “Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots,” Journal of Cell Science, vol. 118, no. 5, pp. 1091–1098, 2005.
[27]
F. J. I. Fowkes, S. J. Allen, A. Allen, M. P. Alpers, D. J. Weatherall, and K. P. Day, “Increased microerythrocyte count in homozygous α+- thalassaemia contributes to protection against severe malarial anaemia,” PLoS Medicine, vol. 5, no. 3, article e56, pp. 0494–0501, 2008.
[28]
C. López, C. Saravia, A. Gomez, J. Hoebeke, and M. A. Patarroyo, “Mechanisms of genetically-based resistance to malaria,” Gene, vol. 467, no. 1-2, pp. 1–12, 2010.
[29]
T. N. Williams, K. Maitland, S. Bennett et al., “High incidence of malaria in α-thalassaemic children,” Nature, vol. 383, no. 6600, pp. 522–525, 1996.
[30]
S. J. Allen, O. 'Donnell A, N. D. Alexander, et al., “alpha+-Thalassemia protects children against disease caused by other infections as well as malaria.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14736–14741, 1997.
[31]
F. P. Mockenhaupt, S. Ehrhardt, S. Gellert et al., “α+-thalassemia protects African children from severe malaria,” Blood, vol. 104, no. 7, pp. 2003–2006, 2004.
[32]
S. Wambua, T. W. Mwangi, M. Kortok et al., “The effect of α+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya,” PLoS Medicine, vol. 3, no. 5, article e158, 2006.
[33]
A. Enevold, J. P. Lusingu, B. Mmbando et al., “Reduced risk of uncomplicated malaria episodes in children with alpha +-thalassemia in Northeastern Tanzania,” The American Journal of Tropical Medicine and Hygiene, vol. 78, no. 5, pp. 714–720, 2008.
[34]
G. A. Luzzi, A. H. Merry, C. I. Newbold, K. Marsh, and G. Pasvol, “Protection by α-thalassaemia against Plasmodium falciparum malaria: modified surface antigen expression rather than impaired growth or cytoadherence,” Immunology Letters, vol. 30, no. 2, pp. 233–240, 1991.
[35]
Y. Yuthavong and P. Wilairat, “Protection against malaria by thalassaemia and haemoglobin variants,” Parasitology Today, vol. 9, no. 7, pp. 241–245, 1993.
[36]
I. A. Cockburn, M. J. Mackinnon, A. O'Donnell et al., “A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 272–277, 2004.
[37]
M. Willcox, A. Bjorkman, and J. Brohult, “Falciparum malaria and β-thalassaemia trait in northern Liberia,” Annals of Tropical Medicine and Parasitology, vol. 77, no. 4, pp. 335–347, 1983.
[38]
C. R. Brockelman, B. Wongsattayanont, P. Tan-Ariya, and S. Fucharoen, “Thalassemic erythrocytes inhibit in vitro growth of Plasmodium falciparum,” Journal of Clinical Microbiology, vol. 25, no. 1, pp. 56–60, 1987.
[39]
T. G. Smith, K. Ayi, L. Serghides, C. D. Mcallister, and K. C. Kain, “Innate immunity to malaria caused by Plasmodium falciparum,” Clinical and Investigative Medicine, vol. 25, no. 6, pp. 262–272, 2002.
[40]
K. Ayi, F. Turrini, A. Piga, and P. Arese, “Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait,” Blood, vol. 104, no. 10, pp. 3364–3371, 2004.
[41]
S. Perrotta, A. Borriello, A. Scaloni et al., “The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: implications for band 3 function,” Blood, vol. 106, no. 13, pp. 4359–4366, 2005.
[42]
B. Genton, F. Al-Yaman, C. S. Mgone et al., “Ovalocytosis and cerebral malaria,” Nature, vol. 378, no. 6557, pp. 564–565, 1995.
[43]
S. J. Allen, A. O'Donnell, N. D. E. Alexander et al., “Prevention of cerebral malaria in children in Papua New Guinea by Southeast Asian ovalocytosis band 3,” The American Journal of Tropical Medicine and Hygiene, vol. 60, no. 6, pp. 1056–1060, 1999.
[44]
T. N. Williams, “Red blood cell defects and malaria,” Molecular and Biochemical Parasitology, vol. 149, no. 2, pp. 121–127, 2006.
[45]
M. C. Murray and M. E. Perkins, “Phosphorylation of erythrocyte membrane and cytoskeleton proteins in cells infected with Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 34, no. 3, pp. 229–236, 1989.
[46]
C. Magowan, J. Liang, J. Yeung, Y. Takakuwa, R. L. Coppel, and N. Mohandas, “Plasmodium falciparum: influence of malarial and host erythrocyte skeletal protein interactions on phosphorylation in infected erythrocytes,” Experimental Parasitology, vol. 89, no. 1, pp. 40–49, 1998.
[47]
B. W. Suetterlin, B. Kappes, and R. M. Franklin, “Localization and stage specific phosphorylation of Plasmodium falciparum phosphoproteins during the intraerythrocytic cycle,” Molecular and Biochemical Parasitology, vol. 46, no. 1, pp. 113–122, 1991.
[48]
A. Pantaleo, E. Ferru, F. Carta et al., “Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by P. falciparum growth,” Proteomics, vol. 10, no. 19, pp. 3469–3479, 2010.
[49]
A. Pantaleo, E. Ferru, R. Vono et al., “New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation,” Free Radical Biology and Medicine, vol. 52, no. 2, pp. 527–536, 2012.
[50]
A. Pantaleo, G. Giribaldi, F. Mannu, P. Arese, and F. Turrini, “Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions,” Autoimmunity Reviews, vol. 7, no. 6, pp. 457–462, 2008.
[51]
O. Olivieri, L. de Franceschi, M. D. Capellini, D. Girelli, R. Corrocher, and C. Brugnara, “Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias,” Blood, vol. 84, no. 1, pp. 315–320, 1994.
[52]
L. de Franceschi, L. Ronzoni, M. D. Cappellini et al., “K-CL co-transport plays an important role in normal and β thalassemic erythropoiesis,” Haematologica, vol. 92, no. 10, pp. 1319–1326, 2007.
[53]
C. Brugnara and L. de Franceschi, “Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes,” Journal of Cellular Physiology, vol. 154, no. 2, pp. 271–280, 1993.
[54]
W. Su, B. E. Shmukler, M. N. Chernova et al., “Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation,” The American Journal of Physiology, vol. 277, no. 5, pp. C899–C912, 1999.
[55]
L. de Franceschi, F. Turrini, E. M. del Giudice et al., “Decreased band 3 anion transport activity and band 3 clusterization in congenital dyserythropoietic anemia type II,” Experimental Hematology, vol. 26, no. 9, pp. 869–873, 1998.
[56]
L. de Franceschi, O. Olivieri, E. Miraglia del Giudice, et al., “Membrane cation and anion transport activities in erythrocytes of hereditary spherocytosis: effects of different membrane protein defects,” American Journal of Hematology, vol. 55, no. 3, pp. 121–128, 1997.
[57]
L. de Franceschi, R. S. Franco, M. Bertoldi, et al., “Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease,” FASEB Journal, vol. 27, no. 2, pp. 750–759, 2013.
[58]
L. de Franceschi, N. Saadane, M. Trudel, S. L. Alper, C. Brugnara, and Y. Beuzard, “Treatment with oral clotrimazole blocks Ca2+-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1670–1676, 1994.
[59]
A. Wieschhaus, A. Khan, A. Zaidi, et al., “Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology,” The Biochemical Journal, vol. 448, no. 1, pp. 141–152, 2012.
[60]
L. de Franceschi, L. Fumagalli, O. Olivieri, R. Corrocher, C. A. Lowell, and G. Berton, “Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport,” Journal of Clinical Investigation, vol. 99, no. 2, pp. 220–227, 1997.
[61]
L. de Franceschi, et al., “Dietary magnesium supplementation reduces pain crises in patients with sickle cell disease,” Blood, vol. 90, 1997.
[62]
L. de Franceschi, P. Rouyer-Fessard, S. L. Alper, H. Jouault, C. Brugnara, and Y. Beuzard, “Combination therapy of erythropoietin, hydroxyurea, and clotrimazole in a β thalassemic mouse: a model for human therapy,” Blood, vol. 87, no. 3, pp. 1188–1195, 1996.
[63]
L. de Franceschi, M. D. Cappellini, G. Graziadei et al., “The effect of dietary magnesium supplementation on the cellular abnormalities of erythrocytes in patients with β thalassemia intermedia,” Haematologica, vol. 83, no. 2, pp. 118–125, 1998.
[64]
L. de Franceschi, C. Brugnara, and Y. Beuzard, “Dietary magnesium supplementation ameliorates anemia in a mouse model of β-thalassemia,” Blood, vol. 90, no. 3, pp. 1283–1290, 1997.
[65]
L. de Franceschi, F. Daraio, A. Filippini et al., “Liver expression of hepcidin and other iron genes in two mouse models of β-thalassemia,” Haematologica, vol. 91, no. 10, pp. 1336–1342, 2006.
[66]
L. de Franceschi, F. Turrini, M. Honczarenko, et al., “In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia,” Haematologica, vol. 89, no. 11, pp. 1287–1298, 2004.
[67]
O. Shalev, T. Repka, A. Goldfarb et al., “Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo,” Blood, vol. 86, no. 5, pp. 2008–2013, 1995.
[68]
C. B. Hyman, J. A. Ortega, G. Costin, and M. Takahashi, “The clinical significance of magnesium depletion in thalassemia,” Annals of the New York Academy of Sciences, vol. 344, pp. 436–443, 1980.
[69]
V. Abbasciano, G. Bader, L. Graziano et al., “Serum and erythrocyte levels of magnesium in microcytosis: comparison between heterozygous beta-thalassemia and sideropenic anemia,” Haematologica, vol. 76, no. 4, pp. 339–341, 1991.
[70]
E. A. Rachmilewitz, A. Shifter, and I. Kahane, “Vitamin E deficiency in β-thalassemia major: changes in hematological and biochemical parameters after a therapeutic trial with α-tocopherol,” The American Journal of Clinical Nutrition, vol. 32, no. 9, pp. 1850–1858, 1979.
[71]
I. Kahane and E. A. Rachmilewitz, “Alterations in the red blood cell membrane and the effect of vitamin E on osmotic fragility in β thalassemia major,” Israel Journal of Medical Sciences, vol. 12, no. 1, pp. 11–15, 1976.
[72]
L. Tesoriere, D. D'Arpa, D. Butera et al., “Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in β-thalassemia intermedia patients,” Free Radical Research, vol. 34, no. 5, pp. 529–540, 2001.
[73]
E. Fibach and E. A. Rachmilewitz, “The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia,” Annals of the New York Academy of Sciences, vol. 1202, pp. 10–16, 2010.
[74]
S. Srichairatanakool, C. Thephinlap, C. Phisalaphong, J. B. Porter, and S. Fucharoen, “Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma,” Medicinal Chemistry, vol. 3, no. 5, pp. 469–474, 2007.
[75]
J. Amer, D. Atlas, and E. Fibach, “N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells,” Biochimica et Biophysica Acta, vol. 1780, no. 2, pp. 249–255, 2008.
[76]
J. Amer, A. Goldfarb, E. A. Rachmilewitz, and E. Fibach, “Fermented papaya preparation as redox regulator in blood cells of β-thalassemic mice and patients,” Phytotherapy Research, vol. 22, no. 6, pp. 820–828, 2008.
[77]
L. Weiss, “A rationale for an individualized administration frequency of epoetin β: a clinical perspective,” Nephrology Dialysis Transplantation, vol. 17, supplement 6, pp. 8–12, 2002.
[78]
M. I. Lai, J. Jiang, N. Silver, et al., “Alpha-haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of beta-thalassaemia,” The British Journal of Haematology, vol. 133, no. 6, pp. 675–682, 2006.
[79]
X. Yu, Y. Kong, L. C. Dore, et al., “An erythroid chaperone that facilitates folding of alpha-globin subunits for hemoglobin synthesis,” The Journal of Clinical Investigation, vol. 117, no. 7, pp. 1856–1865, 2007.
[80]
E. Khandros, T. L. Mollan, X. Yu et al., “Insights into hemoglobin assembly through in vivo mutagenesis of α-hemoglobin stabilizing protein,” Journal of Biological Chemistry, vol. 287, no. 14, pp. 11325–11337, 2012.
[81]
J. J. Chen, “Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias,” Blood, vol. 109, no. 7, pp. 2693–2699, 2007.
[82]
L. Lu, A.-P. Han, and J.-J. Chen, “Translation initiation control by heme-regulated eukaryotic initiation factor 2α kinase in erythroid cells under cytoplasmic stresses,” Molecular and Cellular Biology, vol. 21, no. 23, pp. 7971–7980, 2001.
[83]
A.-P. Han, C. Yu, L. Lu et al., “Heme-regulated eIF2α kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency,” EMBO Journal, vol. 20, no. 23, pp. 6909–6918, 2001.
[84]
R. N. Suragani, R. S. Zachariah, J. G. Velazquez, et al., “Heme-regulated eIF2alpha kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis,” Blood, vol. 119, no. 22, pp. 5276–5284, 2012.
[85]
H. H. Jang, K. O. Lee, Y. H. Chi et al., “Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function,” Cell, vol. 117, no. 5, pp. 625–635, 2004.
[86]
Z. A. Wood, E. Schr?der, J. R. Harris, and L. B. Poole, “Structure, mechanism and regulation of peroxiredoxins,” Trends in Biochemical Sciences, vol. 28, no. 1, pp. 32–40, 2003.
[87]
F. M. Low, M. B. Hampton, and C. C. Winterbourn, “Peroxiredoxin 2 and peroxide metabolism in the erythrocyte,” Antioxidants and Redox Signaling, vol. 10, no. 9, pp. 1621–1630, 2008.
[88]
B. Manta, M. Hugo, C. Ortiz, G. Ferrer-Sueta, M. Trujillo, and A. Denicola, “The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2,” Archives of Biochemistry and Biophysics, vol. 484, no. 2, pp. 146–154, 2009.
[89]
A. Matte, P. S. Low, F. Turrini et al., “Peroxiredoxin-2 expression is increased in β-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress,” Free Radical Biology and Medicine, vol. 49, no. 3, pp. 457–466, 2010.
[90]
A. Matte, M. Bertoldi, N. Mohandas, et al., “Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3,” Free Radical Biology and Medicine, vol. 55, pp. 27–35, 2013.
[91]
L. de Franceschi, M. Bertoldi, L. de Falco et al., “Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis,” Haematologica, vol. 96, no. 11, pp. 1595–1604, 2011.
[92]
P. Zhang, B. Liu, S. W. Kang, M. S. Seo, S. G. Rhee, and L. M. Obeid, “Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2,” Journal of Biological Chemistry, vol. 272, no. 49, pp. 30615–30618, 1997.
[93]
S. W. Kang, H. Z. Chae, M. S. Seo, K. Kim, I. C. Baines, and S. G. Rhee, “Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generatedin response to growth factors and tumor necrosis factor-α,” Journal of Biological Chemistry, vol. 273, no. 11, pp. 6297–6302, 1998.
[94]
J. Liu, J. Zhang, Y. Ginzburg, et al., “Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis,” Blood, vol. 121, no. 2, pp. e43–e49, 2013.
[95]
S. Santos Franco, L. De Falco, S. Ghaffari et al., “Resveratrol accelerates erythroid maturation by activation of FOXO3 and ameliorates anemia in beta-thalassemic mice,” Haematologica, 2013.