全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress

DOI: 10.1155/2013/327167

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lipid droplet (LD) formation is a hallmark of cellular stress. Cells attempt to combat noxious stimuli by switching their metabolism from oxidative phosphorylation to glycolysis, sparing resources in LDs for generating cellular reducing power and for anabolic biosynthesis. Membrane phospholipids are also a source of LDs. To elucidate the formation of LDs, we exposed mice to hyperoxia, hypoxia, myocardial ischemia, and sepsis induced by cecal ligation and puncture (CLP). All the above-mentioned stressors enhanced the formation of LDs, as assessed by transmission electron microscopy, with severe mitochondrial swelling. Disruption of mitochondria by depleting mitochondrial DNA (ρ0 cells) significantly augmented the formation of LDs, causing transcriptional activation of fatty acid biosynthesis and metabolic reprogramming to glycolysis. Heme oxygenase (HO)-1 counteracts CLP-mediated septic shock in mouse models. In HO-1-deficient mice, LD formation was not observed upon CLP, but a concomitant decrease in “LD-decorating proteins” was observed, implying a link between LDs and cytoprotective activity. Collectively, LD biogenesis during stress can trigger adaptive LD formation, which is dependent on mitochondrial integrity and HO-1 activity; this may be a cellular survival strategy, apportioning energy-generating substrates to cellular defense. 1. Introduction Intracellular lipid droplets (LDs) store neutral lipids, including triacylglycerol and cholesterol esters, in cells [1]. LDs are surrounded by a unique phospholipid monolayer that is decorated with many proteins, among which adipocyte differentiation-related protein (ADRP) and the perilipin family are well characterized [2–4]. Although LDs were initially considered to be static organelles for fat storage, it is becoming increasingly evident that alterations in the regulation of formation and breakdown of LD can affect the risk of metabolic disorders such as diabetes and related diseases [5–8]. Recently, the biology of LDs has gained public interest because of the causal link between excess lipid storage in certain tissues and pathophysiologies related to obesity [9, 10]. In these cases, LDs are likely to interfere with membrane trafficking of the insulin-sensitive glucose transporter, which might account for the insulin resistance common in patients with type 2 diabetes [11]. LDs are formed under two very different environmental conditions that are not mutually exclusive. First, cells accumulate LDs in response to exogenous lipid availability. It is thought that the fatty acids in LDs are stored for

References

[1]  A. S. Greenberg, R. A. Coleman, F. B. Kraemer et al., “The role of lipid droplets in metabolic disease in rodents and humans,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2102–2110, 2011.
[2]  R. E. K. MacPherson, E. A. F. Herbst, E. J. Reynolds, R. Vandenboom, B. D. Roy, and S. J. Peters, “Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 302, no. 1, pp. R29–R36, 2012.
[3]  S. M. Storey, A. L. McIntosh, S. Senthivinayagam, K. C. Moon, and B. P. Atshaves, “The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 301, no. 5, pp. E991–E1003, 2011.
[4]  J. Torday and V. Rehan, “Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression,” Experimental Lung Research, vol. 37, no. 6, pp. 376–386, 2011.
[5]  R. C. R. Meex, P. Schrauwen, and M. K. C. Hesselink, “Modulation of myocellular fat stores: lipid droplet dynamics in health and disease,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 297, no. 4, pp. R913–R924, 2009.
[6]  S. O. Olofsson, P. Bostr?m, L. Andersson, M. Rutberg, J. Perman, and J. Borén, “Lipid droplets as dynamic organelles connecting storage and efflux of lipids,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 448–458, 2009.
[7]  H. J. Kim, T. W. Jung, E. S. Kang et al., “Depot-specific regulation of perilipin by rosiglitazone in a diabetic animal model,” Metabolism, vol. 56, no. 5, pp. 676–685, 2007.
[8]  D. H. Boehme, H. J. Sobel, E. Marquet, and G. Salen, “Liver in Cerebrotendinous xanthomatosis (CTX). A histochemical and EM study of four cases,” Pathology Research and Practice, vol. 170, no. 1–3, pp. 192–201, 1980.
[9]  T. I. A. S?rensen, S. Virtue, and A. Vidal-Puig, “Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 400–404, 2010.
[10]  A. Paul, L. Chan, and P. E. Bickel, “The PAT family of lipid droplet proteins in heart and vascular cells,” Current Hypertension Reports, vol. 10, no. 6, pp. 461–466, 2008.
[11]  S. O. Olofsson, P. Bostr?m, L. Andersson et al., “Triglyceride containing lipid droplets and lipid droplet-associated proteins,” Current Opinion in Lipidology, vol. 19, no. 5, pp. 441–447, 2008.
[12]  D. A. Miranda, T. R. Koves, D. A. Gross et al., “Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2,” The Journal of Biological Chemistry, vol. 286, no. 49, pp. 42188–42199, 2011.
[13]  V. A. Ivashov, G. Zellnig, K. Grillitsch, and G. Daum, “Identification of triacylglycerol and steryl ester synthases of the methylotrophic yeast Pichia pastoris,” Biochimica et Biophysica Acta, vol. 1831, no. 6, pp. 1158–1166, 2013.
[14]  M. Ueno, J. Suzuki, Y. Zenimaru et al., “Cardiac overexpression of hormone-sensitive lipase inhibits myocardial steatosis and fibrosis in streptozotocin diabetic mice,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 294, no. 6, pp. E1109–E1118, 2008.
[15]  A. Khatchadourian, S. D. Bourque, V. R. Richard, V. I. Titorenko, and D. Maysinger, “Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia,” Biochimica et Biophysica Acta, vol. 1821, no. 4, pp. 607–617, 2012.
[16]  C. Younce and P. Kolattukudy, “MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy,” Cellular Physiology and Biochemistry, vol. 30, no. 2, pp. 307–320, 2012.
[17]  M. A. Fernàndez, C. Albor, M. Ingelmo-Torres et al., “Caveolin-1 is essential for liver regeneration,” Science, vol. 313, no. 5793, pp. 1628–1632, 2006.
[18]  C. M. Blouin, S. Le Lay, A. Eberl et al., “Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects,” Journal of Lipid Research, vol. 51, no. 5, pp. 945–956, 2010.
[19]  A. W. Cohen, B. Razani, W. Schubert et al., “Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation,” Diabetes, vol. 53, no. 5, pp. 1261–1270, 2004.
[20]  M. A. Fernández-Rojo, C. Restall, C. Ferguson et al., “Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration,” Hepatology, vol. 55, no. 5, pp. 1574–1584, 2012.
[21]  W. C. Su, X. Liu, A. A. Macias, R. M. Baron, and M. A. Perrella, “Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 239–247, 2008.
[22]  C. A. Piantadosi, C. M. Withers, R. R. Bartz et al., “Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression,” The Journal of Biological Chemistry, vol. 286, no. 18, pp. 16374–16385, 2011.
[23]  D. Slebos, S. W. Ryter, M. van der Toorn et al., “Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death,” The American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 4, pp. 409–417, 2007.
[24]  C. A. Piantadosi, M. S. Carraway, A. Babiker, and H. B. Suliman, “Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1,” Circulation Research, vol. 103, no. 11, pp. 1232–1240, 2008.
[25]  H. P. Kim, S. W. Ryter, and A. M. Choi, “CO as a signaling molecule,” Annual Review of Pharmacology and Toxicology, vol. 46, pp. 411–449, 2006.
[26]  S. W. Ryter, J. Alam, and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications,” Physiological Reviews, vol. 86, no. 2, pp. 583–650, 2006.
[27]  A. Tanaka, Y. Jin, S. J. Lee et al., “Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death,” The American Journal of Respiratory Cell and Molecular Biology, vol. 46, no. 4, pp. 507–514, 2012.
[28]  S. J. Lee, A. Smith, L. Guo et al., “Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension,” The American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 649–658, 2011.
[29]  S. J. Lee, H. P. Kim, Y. Jin, A. M. K. Choi, and S. W. Ryter, “Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis,” Autophagy, vol. 7, no. 8, pp. 829–839, 2011.
[30]  J. Zhang, J. Lu, D. Chen et al., “Myocardial autophagy variation during acute myocardial infarction in rats: the effects of carvedilol,” Chinese Medical Journal, vol. 122, no. 19, pp. 2372–2379, 2009.
[31]  R. Singh, S. Kaushik, Y. Wang et al., “Autophagy regulates lipid metabolism,” Nature, vol. 458, no. 7242, pp. 1131–1135, 2009.
[32]  A. G. Bodnar, J. M. Cooper, I. J. Holt, J. V. Leonard, and A. H. V. Schapira, “Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion,” The American Journal of Human Genetics, vol. 53, no. 3, pp. 663–669, 1993.
[33]  K. Nakahira, J. A. Haspel, V. A. K. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011.
[34]  M. Sekiya, A. Hiraishi, M. Touyama, and K. Sakamoto, “Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells,” Biochemical and Biophysical Research Communications, vol. 375, no. 4, pp. 602–607, 2008.
[35]  T. Gimm, M. Wiese, B. Teschemacher et al., “Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1,” FASEB Journal, vol. 24, no. 11, pp. 4443–4458, 2010.
[36]  A. Perl, R. Hanczko, T. Telarico, Z. Oaks, and S. Landas, “Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase,” Trends in Molecular Medicine, vol. 17, no. 7, pp. 395–403, 2011.
[37]  M. R. Soeters and P. B. Soeters, “The evolutionary benefit of insulin resistance,” Clinical Nutrition, vol. 31, no. 6, pp. 1002–1007, 2012.
[38]  P. Anand, S. Cermelli, Z. Li, et al., “A novel role for lipid droplets in the organismal antibacterial response,” Elife, vol. 1, Article ID e00003, 2012.
[39]  P. Ebeling, H. A. Koistinen, and V. A. Koivisto, “Insulin-independent glucose transport regulates insulin sensitivity,” FEBS Letters, vol. 436, no. 3, pp. 301–303, 1998.
[40]  S. J. van Cromphaut, I. Vanhorebeek, and G. van den Berghe, “Glucose metabolism and insulin resistance in sepsis,” Current Pharmaceutical Design, vol. 14, no. 19, pp. 1887–1899, 2008.
[41]  P. Frank, A. Katz, E. Andersson, and K. Sahlin, “Acute exercise reverses starvation-mediated insulin resistance in humans,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 304, no. 4, pp. E436–E443, 2013.
[42]  B. Lindegaard, T. Hvid, T. Gr?ndahl et al., “Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV,” PLoS ONE, vol. 8, no. 3, Article ID e55632, 2013.
[43]  M. Bonizzoli, G. Zagli, C. Lazzeri, S. Degl'Innocenti, G. Gensini, and A. Peris, “Early insulin resistance in severe trauma without head injury as outcome predictor? A prospective, monocentric pilot study,” Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 20, article 69, 2012.
[44]  I. Capasso, E. Esposito, F. Pentimalli et al., “Homeostasis model assessment to detect insulin resistance and identify patients at high risk of breast cancer development: national cancer institute of naples experience,” Journal of Experimental and Clinical Cancer Research, vol. 32, article 14, 2013.
[45]  K. S. Park, K. J. Nam, J. W. Kim et al., “Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 280, no. 6, pp. E1007–E1014, 2001.
[46]  L. Formentini, M. Sánchez-Aragó, L. Sánchez-Cenizo, and J. M. C. Cuezva, “The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response,” Molecular Cell, vol. 45, no. 6, pp. 731–742, 2012.
[47]  C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008.
[48]  S. Lancel, S. M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere, “Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis,” Journal of Pharmacology and Experimental Therapeutics, vol. 329, no. 2, pp. 641–648, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413