全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sexual Dimorphism of Cardiovascular Ischemia Susceptibility Is Mediated by Heme Oxygenase

DOI: 10.1155/2013/521563

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigated the gender differences in heme-oxygenase (HO) enzyme, which produces endogenous vascular protective carbon monoxide (CO). We studied (1) the activity and expression of HO enzymes in the left ventricle (LV) and aorta, (2) basal increase in basal blood pressure provoked by arginine vasopressine (AVP) in vivo, (3) the heart perfusion induced by AVP, (4) the ST segment depression provoked by adrenaline and 30 seconds later phentolamine, and (5) the aorta ring contraction induced by AVP in female and male Wistar rats. We found that HO activity and the expression of HO-1 and HO-2 were increased in female rat aorta and LV. We demonstrated that the basal blood pressure and administration of AVP provoked blood pressure response are increased in the males; the female myocardium was less sensitive towards angina. Both differences could be aggravated by the inhibition of HO. The aorta rings were more susceptible towards vasoconstriction by AVP in males; isolated heart perfusion decrease was higher in males. The HO inhibition aggravated the heart perfusion in both sexes. In conclusion, the increased HO activity and expression in females might play a role in the sexual dimorphism of cardiovascular ischemia susceptibility during the reproductive age. 1. Introduction Gender-based differences in the incidence of hypertensive and coronary artery disease, the development of atherosclerosis, and myocardial remodelling after infarction are attributable to the direct effect of oestrogen on the myocardium, vascular smooth muscle (VSM), and endothelium. Cardiovascular morbidity and mortality are far less in premenopausal women compared to age-matched men, but the basis of this discrepancy remains controversial. Ovarian hormones are believed to be mainly responsible for this “female advantages” in cardiovascular function although the underlying mechanism has not been fully elucidated. In the heart and vasculature oestrogen mediates rapid vasodilation via production of nitric oxide (NO), protects against neointimal injury in the balloon-injured rat and facilitates the re-endothelialization of the damaged vessel [1], reduces both myocardial infarct size and occurrence of ischemia- and reperfusion-induced ventricular arrhythmias in canine heart [2]. Carbon monoxide (CO) is a product of heme oxygenase (HO) as well and is not an antioxidant but can cause induction of antioxidant genes [3–5]; it also decreases superoxide ( ) levels [6, 7], increases gluthione (GSH) levels [8], and has an antiapoptotic effect [9, 10]. Further, CO is a vasodilator, which has been shown

References

[1]  S. J. Bernelot Moens, G. R. Schnitzler, M. Nickerson, et al., “Rapid estrogen receptor signaling is essential for the protective effects of estrogen against vascular injury,” Circulation, vol. 126, no. 16, pp. 1993–2004, 2012.
[2]  C. Tsai, S. Su, T. Chou, and T. Lee, “Differential effects of sarcolemmal and mitochondrial KATP channels activated by 17 β-estradiol on reperfusion arrhythmias and infarct sizes in canine hearts,” Journal of Pharmacology and Experimental Therapeutics, vol. 301, no. 1, pp. 234–240, 2002.
[3]  N. G. Abraham, R. Rezzani, L. Rodella et al., “Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes,” American Journal of Physiology, vol. 287, no. 6, pp. H2468–H2477, 2004.
[4]  B. Juhasz, B. Varga, A. Czompa et al., “Postischemic cardiac recovery in heme oxygenase-1 transgenic ischemic/reperfused mouse myocardium,” Journal of Cellular and Molecular Medicine, vol. 15, no. 9, pp. 1973–1982, 2011.
[5]  I. Bak, L. Szendrei, T. Turoczi et al., “Heme oxygenase-1-related carbon monoxide production and ventricular fibrillation in isolated ischemic/reperfused mouse myocardium,” The FASEB Journal, vol. 17, no. 14, pp. 2133–2135, 2003.
[6]  M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al., “Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase,” Free Radical Biology and Medicine, vol. 43, no. 5, pp. 720–729, 2007.
[7]  M. Thirunavukkarasu, R. S. Adluri, B. Juhasz et al., “Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice,” Functional and Integrative Genomics, vol. 12, no. 3, pp. 501–514, 2012.
[8]  S. Quan, L. Yang, S. Shnouda et al., “Expression of human heme oxygenase-1 in the thick ascending limb attenuates angiotensin II-mediated increase in oxidative injury,” Kidney International, vol. 65, no. 5, pp. 1628–1639, 2004.
[9]  B. Fabris, R. Candido, M. Bortoletto et al., “Stimulation of cardiac apoptosis in ovariectomized hypertensive rats: potential role of the renin-angiotensin system,” Journal of Hypertension, vol. 29, no. 2, pp. 273–281, 2011.
[10]  B. Juhasz, P. Der, P. Szodoray et al., “Adrenocorticotrope hormone fragment (4–10) attenuates the ischemia/reperfusion-induced cardiac injury in isolated rat hearts,” Antioxidants and Redox Signaling, vol. 9, no. 11, pp. 1851–1861, 2007.
[11]  J. Kaide, F. Zhang, Y. Wei et al., “Vascular CO counterbalances the sensitizing influence of 20-HETE on agonist-induced vasoconstriction,” Hypertension, vol. 44, no. 2, pp. 210–216, 2004.
[12]  F. Zhang, J.-I. Kaide, Y. Wei et al., “Carbon monoxide produced by isolated arterioles attenuates pressure-induced vasoconstriction,” American Journal of Physiology, vol. 281, no. 1, pp. H350–H358, 2001.
[13]  S. J. Stanford, M. J. Walters, A. A. Hislop et al., “Heme oxygenase is expressed in human pulmonary artery smooth muscle where carbon monoxide has an anti-proliferative role,” European Journal of Pharmacology, vol. 473, no. 2-3, pp. 135–141, 2003.
[14]  J. F. Ndisang, H. E. N. Tabien, and R. Wang, “Carbon monoxide and hypertension,” Journal of Hypertension, vol. 22, no. 6, pp. 1057–1074, 2004.
[15]  J. F. Ndisang, L. Wu, W. Zhao, and R. Wang, “Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats,” Blood, vol. 101, no. 10, pp. 3893–3900, 2003.
[16]  S. W. Ryter, J. Alam, and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications,” Physiological Reviews, vol. 86, no. 2, pp. 583–650, 2006.
[17]  Y. Deng, B. J. Wu, P. K. Witting, and R. Stocker, “Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1,” Circulation, vol. 110, no. 13, pp. 1855–1860, 2004.
[18]  G. A. Visner, F. Lu, H. Zhou, J. Liu, K. Kazemfar, and A. Agarwal, “Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin,” Circulation, vol. 107, no. 6, pp. 911–916, 2003.
[19]  S. Immenschuh, V. Hinke, A. Ohlmann et al., “Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes,” Biochemical Journal, vol. 334, part 1, pp. 141–146, 1998.
[20]  A. M. K. Choi, “Heme oxygenase-1 protects the heart,” Circulation Research, vol. 89, no. 2, pp. 105–107, 2001.
[21]  S. Yet, R. Tian, M. D. Layne et al., “Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice,” Circulation Research, vol. 89, no. 2, pp. 168–173, 2001.
[22]  R. Stocker and M. A. Perrella, “Heme oxygenase-1: a novel drug target for atherosclerotic diseases?” Circulation, vol. 114, no. 20, pp. 2178–2189, 2006.
[23]  B. Dawn and R. Bolli, “HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection?” American Journal of Physiology, vol. 289, no. 2, pp. H522–H524, 2005.
[24]  B. Juhasz, P. Der, T. Turoczi, I. Bacskay, E. Varga, and A. Tosaki, “Preconditioning in intact and previously diseased myocardium: laboratory or clinical dilemma?” Antioxidants and Redox Signaling, vol. 6, no. 2, pp. 325–333, 2004.
[25]  B. Juhasz, D. K. Das, A. Kertesz, A. Juhasz, R. Gesztelyi, and B. Varga, “Reduction of blood cholesterol and ischemic injury in the hypercholesteromic rabbits with modified resveratrol, longevinex,” Molecular and Cellular Biochemistry, vol. 348, no. 1-2, pp. 199–203, 2011.
[26]  P. K. Datta, S. B. Koukouritaki, K. A. Hopp, and E. A. Lianos, “Heme oxygenasc-1 induction attenuates inducible nitric: oxide synthase expression and proteinuria in glomerulonephritis,” Journal of the American Society of Nephrology, vol. 10, no. 12, pp. 2540–2550, 1999.
[27]  B. S. Zuckerbraun, T. R. Billiar, S. L. Otterbein et al., “Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1,” Journal of Experimental Medicine, vol. 198, no. 11, pp. 1707–1716, 2003.
[28]  Y. Guo, A. B. Stein, W. Wu et al., “Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo,” American Journal of Physiology, vol. 286, no. 5, pp. H1649–H1653, 2004.
[29]  S. W. Ryter, D. Morse, and A. M. K. Choi, “Carbon monoxide and bilirubin: potential therapies for pulmonary/vascular injury and disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 2, pp. 175–182, 2007.
[30]  P. Diel and C. Weigt, “Leptin and obesity in ovarian dysfunction in menopause,” in Nutrition and Diet in Menopause, C. J. Hollins Martin, R. R. Watson, and V. R. Preedy, Eds., pp. 255–270, Humana Press, New Jersey, NJ, USA, 2013.
[31]  I. Pávó, F. László, é. Morschl et al., “Raloxifene, an oestrogen-receptor modulator, prevents decreased constitutive nitric oxide and vasoconstriction in ovariectomized rats,” European Journal of Pharmacology, vol. 410, no. 1, pp. 101–104, 2000.
[32]  J. Nemcsik, é. Morschl, J. Egresits et al., “Raloxifene lowers ischaemia susceptibility by increasing nitric oxide generation in the heart of ovariectomized rats in vivo,” European Journal of Pharmacology, vol. 495, no. 2-3, pp. 179–184, 2004.
[33]  J. N. Stallone, “Role of endothelium in sexual dimorphism in vasopressin-induced contraction of rat aorta,” American Journal of Physiology, vol. 265, no. 6, part 2, pp. H2073–H2080, 1993.
[34]  R. A. Brown, M. F. Walsh, and J. Ren, “Influence of gender and diabetes on vascular and myocardial contractile function,” Endocrine Research, vol. 27, no. 4, pp. 399–408, 2001.
[35]  J. E. R. van Lennep, H. T. Westerveld, D. W. Erkelens, and E. E. van der Wall, “Risk factors for coronary heart disease: implications of gender,” Cardiovascular Research, vol. 53, no. 3, pp. 538–549, 2002.
[36]  J. E. Rossouw, “Hormones, genetic factors, and gender differences in cardiovascular disease,” Cardiovascular Research, vol. 53, no. 3, pp. 550–557, 2002.
[37]  Y. Lavrovsky, C. S. Song, B. Chatterjee, and A. K. Roy, “Age-dependent increase of heme oxygenase-1 gene expression in the liver mediated by NFκB,” Mechanisms of Ageing and Development, vol. 114, no. 1, pp. 49–60, 2000.
[38]  T. Ariyoshi, K. Tsuboi, and K. Hamasaki, “Effects of age and sex on microsomal heme oxygenase and cytochrome P-450 content in liver of rats,” Journal of Pharmacobio-Dynamics, vol. 4, no. 9, pp. 664–669, 1981.
[39]  C. Wittnich, L. Tan, J. Wallen, et al., “Sex differences in myocardial metabolism and cardiac function: an emerging concept,” Pflügers Archiv, vol. 465, no. 5, pp. 719–729, 2013.
[40]  M. A. Choudhry, K. I. Bland, and I. H. Chaudry, “Trauma and immune response—effect of gender differences,” Injury, vol. 38, no. 12, pp. 1382–1391, 2007.
[41]  N. G. Abraham and A. Kappas, “Pharmacological and clinical aspects of heme oxygenase,” Pharmacological Reviews, vol. 60, no. 1, pp. 79–127, 2008.
[42]  S. Patriarca, A. L. Furfaro, L. Cosso et al., “Heme oxygenase 1 expression in rat liver during ageing and ethanol intoxication,” Biogerontology, vol. 8, no. 3, pp. 365–372, 2007.
[43]  N. G. Abraham, R. D. Levere, and M. L. Freedman, “Effect of age on rat liver heme and drug metabolism,” Experimental Gerontology, vol. 20, no. 5, pp. 277–284, 1985.
[44]  P. J. W. Smith, O. Ornatsky, D. J. Stewart et al., “Effects of estrogen replacement on infarct size, cardiac remodeling, and the endothelin system after myocardial infarction in ovariectomized rats,” Circulation, vol. 102, no. 24, pp. 2983–2989, 2000.
[45]  R. Rahimian, G. P. Dubé, W. Toma, N. Dos Santos, B. M. McManus, and C. van Breemen, “Raloxifene enhances nitric oxide release in rat aorta via increasing endothelial nitric oxide mRNA expression,” European Journal of Pharmacology, vol. 434, no. 3, pp. 141–149, 2002.
[46]  é. Morschl, I. Bretus, J. Nemcsik, F. László, and I. Pávó, “Estrogen-mediated up-regulation of the Ca-dependent constitutive nitric oxide synthase in the rat aorta and heart,” Life Sciences, vol. 68, no. 1, pp. 49–55, 2000.
[47]  H. J. Knot, K. M. Lounsbury, J. E. Brayden, and M. T. Nelson, “Gender differences in coronary artery diameter reflect changes in both endothelial Ca2+ and ecNOS activity,” American Journal of Physiology, vol. 276, no. 3, part 2, pp. H961–H969, 1999.
[48]  J. S. Janicki, F. G. Spinale, and S. P. Levick, “Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase,” Pflügers Archiv, vol. 465, no. 5, pp. 687–697, 2013.
[49]  W. Keung, P. M. Vanhoutte, and R. Y. K. Man, “Nongenomic responses to 17β-estradiol in male rat mesenteric arteries abolish intrinsic gender differences in vascular responses,” British Journal of Pharmacology, vol. 146, no. 8, pp. 1148–1155, 2005.
[50]  M. M. Al-Owais, J. L. Scragg, M. L. Dallas, et al., “Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition,” The Journal of Biological Chemistry, vol. 287, no. 29, pp. 24754–24764, 2012.
[51]  M. D. Maines, “The heme oxygenase system: a regulator of second messenger gases,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 517–554, 1997.
[52]  X. N. Nguyen and P. A. Dennery, “Nuclear translocation of heme oxygenase-1 and heme oxygenase-2 proteins: a novel signaling pathway,” Pediatric Research, vol. 51, no. 4, p. 55a, 2002.
[53]  H. F. Bunn and R. O. Poyton, “Oxygen sensing and molecular adaptation to hypoxia,” Physiological Reviews, vol. 76, no. 3, pp. 839–885, 1996.
[54]  S. W. Ryter, H. P. Kim, K. Nakahira, B. S. Zuckerbraun, D. Morse, and A. M. K. Choi, “Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system,” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2157–2173, 2007.
[55]  C. Chen, D. Pung, V. Leong et al., “Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals,” Free Radical Biology and Medicine, vol. 37, no. 10, pp. 1578–1590, 2004.
[56]  S. Chang, J. Garcia, J. A. Melendez, M. S. Kilberg, and A. Agarwal, “Haem oxygenase 1 gene induction by glucose deprivation is mediated by reactive oxygen species via the mitochondrial electron-transport chain,” Biochemical Journal, vol. 371, part 3, pp. 877–885, 2003.
[57]  J. T. Chapman, L. E. Otterbein, J. A. Elias, and A. M. K. Choi, “Carbon monoxide attenuates aeroallergen-induced inflammation in mice,” American Journal of Physiology, vol. 281, no. 1, pp. L209–L216, 2001.
[58]  X. Chen, S. E. Varner, A. S. Rao et al., “Laminar flow induction of antioxidant response element-mediated genes in endothelial cells: a novel anti-inflammatory mechanism,” The Journal of Biological Chemistry, vol. 278, no. 2, pp. 703–711, 2003.
[59]  N. Ishizaka, T. Aizawa, I. Mori et al., “Heme oxygenase-1 is upregulated in the rat heart in response to chronic administration of angiotensin II,” American Journal of Physiology, vol. 279, no. 2, pp. H672–H678, 2000.
[60]  E. Marcantoni, L. Di Francesco, L. Totani et al., “Effects of estrogen on endothelial prostanoid production and cyclooxygenase-2 and heme oxygenase-1 expression,” Prostaglandins and other Lipid Mediators, vol. 98, no. 3-4, pp. 122–128, 2012.
[61]  A. Verma, D. J. Hirsch, C. E. Glatt, G. V. Ronnett, and S. H. Snyder, “Carbon monoxide: a putative neural messenger,” Science, vol. 259, no. 5093, pp. 381–384, 1993.
[62]  D. J. Kaczorowski and B. S. Zuckerbraun, “Carbon monoxide: medicinal chemistry and biological effects,” Current Medicinal Chemistry, vol. 14, no. 25, pp. 2720–2725, 2007.
[63]  M. T. Abdel Aziz, T. Mostafa, H. Atta et al., “Putative role of carbon monoxide signaling pathway in penile erectile function,” Journal of Sexual Medicine, vol. 6, no. 1, pp. 49–60, 2009.
[64]  M. Thirunavukkarasu, B. Juhasz, L. Zhan et al., “VEGFR1 (Flt-1+/?) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium,” Free Radical Biology and Medicine, vol. 42, no. 10, pp. 1487–1495, 2007.
[65]  L. R. Artinian, J. M. Ding, and M. U. Gillette, “Carbon monoxide and nitric oxide: interacting messengers in muscarinic signaling to the brain's circadian clock,” Experimental Neurology, vol. 171, no. 2, pp. 293–300, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413