全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Hypertension on Neurocognitive Domains in Nondemented Parkinson’s Disease Patients

DOI: 10.1155/2014/507529

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Health comorbidities, particularly cardiovascular risk factors, are well known to pose risks for cognitive decline in older adults. To date, little attention has focused on the impact of these comorbidities on Parkinson’s disease (PD). This study examined the prevalence and contribution of comorbidities on cognitive status in PD patients, above and beyond the effects of disease severity. Methods. A cross sectional design was used, including neuropsychological data on 341 PD patients without severe cognitive decline. Comorbidity data were collected via medical chart review. Data were analyzed using a series of multiple hierarchical regressions, controlling for PD-related disease variables. Results. Overall sample characteristics are 69% male, disease duration 9.7 years, Unified Parkinson’s Disease Rating Scale 26.4, and age 64.7 years. Hypercholesterolemia (41.6%), hypertension (38.1%), and hypotension (30.2%) were the most reported comorbidities. The presence of hypertension significantly contributed to domains of executive function and verbal memory. The cooccurrence of orthostatic hypotension moderated the relationship between hypertension and executive function. Conclusions. This study on a large cohort of PD patients provides evidence for a detrimental influence of health comorbidities, particularly hypertension, on cognitive domains that have traditionally been conceptualized as being frontally and/or temporally mediated. 1. Introduction The overall goal of this proof of concept study was to learn whether cardiovascular risk factors, like hypertension and diabetes, might negatively influence cognitive status in Parkinson’s disease, similar to that observed in normal elderly. Parkinson’s disease (PD) is a complex multisystem disorder characterized by motor, cognitive, and mood-motivational changes [1, 2]. Particularly, insidious are cognitive changes. When initially diagnosed, 5–20% of PD patients show signs of cognitive difficulties and up to 80% become demented after 15–20 years [3, 4]. Typical cognitive changes include slowed processing (bradyphrenia), increased forgetfulness, and difficulty with multitasking and working memory. Cognitive changes can occur early in the disease course, worsen with disease progression, and detrimentally affect quality of life and survival [3, 5]. From a neural systems perspective, PD-related cognitive decline has been attributed to deregulation of dopamine-mediated frontal-striatal circuitry and is further complicated by cholinergic changes [6, 7]. Over the past decade, mounting evidence has pointed to

References

[1]  G. E. Alexander, M. R. DeLong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Annual Review of Neuroscience, vol. 9, pp. 357–381, 1986.
[2]  K. R. Chaudhuri and A. H. Schapira, “Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment,” The Lancet Neurology, vol. 8, no. 5, pp. 464–474, 2009.
[3]  D. Aarsland, K. Andersen, J. P. Larsen, A. Lolk, H. Nielsen, and P. Kragh-S?rensen, “Risk of dementia in Parkinson's disease: a community-based, Prospective Study,” Neurology, vol. 56, no. 6, pp. 730–736, 2001.
[4]  M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney Multicenter Study of Parkinson's disease: the inevitability of dementia at 20 years,” Movement Disorders, vol. 23, no. 6, pp. 837–844, 2008.
[5]  A. Schrag, M. Jahanshahi, and N. Quinn, “How does Parkinson's disease affect quality of life? A comparison with quality of life in the general population,” Movement Disorders, vol. 15, pp. 1112–1118, 2000.
[6]  B. Dubois and B. Pillon, “Cognitive deficits in Parkinson's disease,” Journal of Neurology, vol. 244, no. 1, pp. 2–8, 1997.
[7]  C. H. Williams-Gray, J. R. Evans, A. Goris et al., “The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort,” Brain, vol. 132, no. 11, pp. 2958–2969, 2009.
[8]  B. K. Saxby, F. Harrington, I. G. McKeith, K. Wesnes, and G. A. Ford, “Effects of hypertension on attention, memory, and executive function in older adults,” Health Psychology, vol. 22, no. 6, pp. 587–591, 2003.
[9]  D. Knopman, L. L. Boland, T. Mosley et al., “Cardiovascular risk factors and cognitive decline in middle-aged adults,” Neurology, vol. 56, no. 1, pp. 42–48, 2001.
[10]  A. A. Gouw, A. Seewann, W. M. Van Der Flier et al., “Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 2, pp. 126–135, 2011.
[11]  W. Wu, A. M. Brickman, J. Luchsinger et al., “The brain in the age of old: the hippocampal formation is targeted differentially by diseases of late life,” Annals of Neurology, vol. 64, no. 6, pp. 698–706, 2008.
[12]  M. K. Beyer, D. Aarsland, O. J. Greve, and J. P. Larsen, “Visual rating of white matter hyperintensities in Parkinson's disease,” Movement Disorders, vol. 21, no. 2, pp. 223–229, 2006.
[13]  S.-J. Lee, J.-S. Kim, J.-Y. Yoo et al., “Influence of white matter hyperintensities on the cognition of patients with parkinson disease,” Alzheimer Disease and Associated Disorders, vol. 24, no. 3, pp. 227–233, 2010.
[14]  J. S?awek, D. Wieczorek, M. Derejko et al., “The influence of vascular risk factors and white matter hyperintensities on the degree of cognitive impairment in Parkinson's disease,” Neurologia i Neurochirurgia Polska, vol. 42, no. 6, pp. 505–512, 2008.
[15]  J. D. Jones, I. Malaty, C. C. Price, M. S. Okun, and D. Bowers, “Health comorbidities and cognition in 1948 patients with idiopathic Parkinson's disease,” Parkinsonism & Related Disorders, vol. 18, pp. 1073–1078, 2012.
[16]  M. Lezak, D. Howieson, E. Bigler, and D. Tranel, Neuropsychological Assessment, Oxford University Press, New York, NY, USA, 5th edition, 2012.
[17]  A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 3, pp. 181–184, 1992.
[18]  S. Fahn, R. L. Elton, and UPDRS Development Committee, “Unified Parkinson’s disease rating scale,” Recent Development Parkinson, vol. 2, pp. 153–163, 1987.
[19]  C. L. Tomlinson, R. Stowe, S. Patel, C. Rick, R. Gray, and C. E. Clarke, “Systematic review of levodopa dose equivalency reporting in Parkinson's disease,” Movement Disorders, vol. 25, no. 15, pp. 2649–2653, 2010.
[20]  Y. I. Sheline, D. M. Barch, K. Garcia et al., “Cognitive function in late life Depression: relationships to depression severity, cerebrovascular risk factors and processing speed,” Biological Psychiatry, vol. 60, no. 1, pp. 58–65, 2006.
[21]  R. K. Heaton, S. W. Miller, M. J. Taylor, and I. Grant, Revised Comprehensive Norms for An expAnded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults, PAR, Lutz, Fla, USA, 2004.
[22]  M. Charlson, T. P. Szatrowski, J. Peterson, and J. Gold, “Validation of a combined comorbidity index,” Journal of Clinical Epidemiology, vol. 47, no. 11, pp. 1245–1251, 1994.
[23]  P. W. F. Wilson, K. M. Anderson, and W. B. Kannel, “Epidemiology of diabetes mellitus in the elderly. The Framingham Study,” American Journal of Medicine, vol. 80, no. 5 A, pp. 3–9, 1986.
[24]  W. S. Aronow, J. L. Fleg, C. J. Pepine, et al., “ACCF/AHA, 2011 expert consensus document on hypertension in the elderly,” Journal of the American College of Cardiology, vol. 57, pp. 2037–2114, 2011.
[25]  I. Litvan, J. G. Goldman, A. I. Tr?ster et al., “Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines,” Movement Disorders, vol. 27, no. 3, pp. 349–356, 2012.
[26]  K. J. Rothman, “No adjustments are needed for multiple comparisons,” Epidemiology, vol. 1, no. 1, pp. 43–46, 1990.
[27]  D. S. Goldstein, “Dysautonomia in Parkinson's disease: neurocardiological abnormalities,” Lancet Neurology, vol. 2, no. 11, pp. 669–676, 2003.
[28]  A. Verdelho, S. Madureira, J. M. Ferro et al., “Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 12, pp. 1325–1330, 2007.
[29]  S. P. Woods and A. I. Tr?ster, “Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson's disease,” Journal of the International Neuropsychological Society, vol. 9, no. 1, pp. 17–24, 2003.
[30]  W. Nanhoe-Mahabier, K. F. de Laat, J. E. Visser, J. Zijlmans, F.-E. de Leeuw, and B. R. Bloem, “Parkinson disease and comorbid cerebrovascular disease,” Nature Reviews Neurology, vol. 5, no. 10, pp. 533–541, 2009.
[31]  K. M. Rose, D. Couper, M. L. Eigenbrodt, T. H. Mosley, A. R. Sharrett, and R. F. Gottesman, “Orthostatic hypotension and cognitive function: the atherosclerosis risk in communities study,” Neuroepidemiology, vol. 34, no. 1, pp. 1–7, 2010.
[32]  P. L. K. Yap, M. Niti, K. B. Yap, and T. P. Ng, “Orthostatic hypotension, hypotension and cognitive status: early comorbid markers of primary dementia?” Dementia and Geriatric Cognitive Disorders, vol. 26, no. 3, pp. 239–246, 2008.
[33]  V. Novak and I. Hajjar, “The relationship between blood pressure and cognitive function,” Nature Reviews Cardiology, vol. 7, no. 12, pp. 686–698, 2010.
[34]  J. S. Kim, Y. S. Oh, K. S. Lee, Y. I. Kim, D. W. Yang, and D. S. Goldstein, “Association of cognitive dysfunction with neurocirculatory abnormalities in early Parkinson disease,” Neurology, vol. 79, no. 13, pp. 1323–1331, 2012.
[35]  T. O. Dalaker, J. P. Larsen, M. G. Dwyer et al., “White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson's disease,” NeuroImage, vol. 47, no. 4, pp. 2083–2089, 2009.
[36]  N. I. Bohnen and R. L. Albin, “White matter lesions in Parkinson disease,” Nature Reviews Neurology, vol. 7, no. 4, pp. 229–236, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413