Our objectives were to perform a longitudinal assessment of mental status in early stage Parkinson’s disease (PD) patients, with brief neuropsychological tests, in order to find predictive factors for cognitive decline. Sixty-one, early stage, and nondemented patients were assessed twice, over a 2-year interval, with a global cognitive test (mini-mental state examination (MMSE)) and a frontal function test (frontal assessment battery (FAB)) and motor function scales. Dementia and hallucinations were diagnosed according to the DSM-IV criteria. Cognitive function scores did not decrease significantly, except for FAB lexical fluency score. Four patients presented with dementia at followup. The MMSE score below cut-off, worse gait dysfunction, the nontremor motor subtype, and hallucinations were significantly related to dementia. Rigidity and speech dysfunction were related to dementia and a decrease in FAB scores. We can conclude that decline in the MMSE and FAB scores is small and heterogeneous in the early stages of PD. Scores below cut-off in the MMSE could be helpful to predict dementia. Nontremor motor deficits could be predictive factors for frontal cognitive decline and dementia. 1. Introduction Parkinson’s disease is a movement disorder, defined by a combination of tremor, rigidity, bradykinesia, and gait disturbances [1]. Lately, a constellation of nonmotor symptoms has also been described [2]. Cognitive dysfunction, which can ultimately lead to dementia in a great number of cases [3], is a cause of great incapacity in PD. As therapeutic alternatives develop [4], the need for an early detection of cognitive deficits and for accurate prediction of cognitive outcome increases. Brief cognitive tests could be useful for a rapid screening of patients at higher risk for cognitive decline. They also could be of use for following cognitive decline and predicting cognitive outcome. Noncognitive symptoms at the baseline, like motor dysfunction severity, or specific motor symptoms could also be useful as cognitive outcome predictors. Several studies have defined significant clinical heterogeneity at disease onset [5, 6] which could determine prognosis. In previous work, we found that early stage, nondemented PD patients presented with significantly lower scores in the frontal assessment battery (FAB) and the mini-mental state examination (MMSE), when compared to non-PD aged controls, and that MMSE scores were related to nontremor motor scores [7]. In the present study, our objectives were to perform a longitudinal analysis of this cohort, in order to assess
References
[1]
D. J. Gelb, E. Oliver, and S. Gilman, “Diagnostic criteria for Parkinson's disease,” Archives of Neurology, vol. 56, no. 1, pp. 33–39, 1999.
[2]
K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” The Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006.
[3]
M. A. Hely, W. G. J. Reid, M. A. Adena, G. M. Halliday, and J. G. L. Morris, “The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years,” Movement Disorders, vol. 23, no. 6, pp. 837–844, 2008.
[4]
M. Emre, D. Aarsland, A. Albanese et al., “Rivastigmine for dementia associated with Parkinson's disease,” The New England Journal of Medicine, vol. 351, no. 24, pp. 2509–2518, 2004.
[5]
R. Erro, C. Vitale, M. Amboni, et al., “The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients,” PLoS ONE, vol. 8, no. 8, Article ID e70244, 2013.
[6]
S. J. G. Lewis, T. Foltynie, A. D. Blackwell, T. W. Bobbins, A. M. Owen, and R. A. Barker, “Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 3, pp. 343–348, 2005.
[7]
P. Bugalho and J. Vale, “Brief cognitive assessment in the early stages of parkinson disease,” Cognitive and Behavioral Neurology, vol. 24, no. 4, pp. 169–173, 2011.
[8]
M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression and mortality,” Neurology, vol. 17, no. 5, pp. 427–442, 1967.
[9]
S. Fahn, R. L. Elton, and Members of the UPDRS Development Committee, “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, C. D. Marsden, D. B. Calne, and M. Goldstein, Eds., pp. 153–163, Macmollan Health Care Information, Florham Park, NJ, USA, 1987.
[10]
J. Jankovic, M. McDermott, J. Carter et al., “Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort,” Neurology, vol. 40, no. 10, pp. 1529–1534, 1990.
[11]
S. G. Parkin, R. P. Gregory, R. Scott et al., “Unilateral and bilateral pallidotomy for idiopathic Parkinson's disease: a case series of 115 patients,” Movement Disorders, vol. 17, no. 4, pp. 682–692, 2002.
[12]
M. Folstein, S. Folstein, and P. McHugh, ““Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[13]
E. Mamikonyan, P. J. Moberg, A. Siderowf et al., “Mild cognitive impairment is common in Parkinson's disease patients with normal mini-mental state examination (MMSE) scores,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. 226–231, 2009.
[14]
O. Riedel, J. Klotsche, A. Spottke et al., “Cognitive impairment in 873 patients with idiopathic Parkinson's disease: results from the German Study on epidemiology of Parkinson's disease with dementia (GEPAD),” Journal of Neurology, vol. 255, no. 2, pp. 255–264, 2008.
[15]
S. Nazem, A. D. Siderowf, J. E. Duda et al., “Montreal cognitive assessment performance in patients with Parkinson's disease with “normal” global cognition according to mini-mental state examination score,” Journal of the American Geriatrics Society, vol. 57, no. 2, pp. 304–308, 2009.
[16]
N. Kandiah, K. Narasimhalu, P.-N. Lau, S.-H. Seah, W. L. Au, and L. C. S. Tan, “Cognitive decline in early Parkinson's disease,” Movement Disorders, vol. 24, no. 4, pp. 605–608, 2009.
[17]
I. Liepelt, M. Reimold, W. Maetzler et al., “Cortical hypometabolism assessed by a metabolic ratio in Parkinson's disease primarily reflects cognitive deterioration—[18F]FDG-PET,” Movement Disorders, vol. 24, no. 10, pp. 1504–1511, 2009.
[18]
L. N. Williams, P. Seignourel, G. P. Crucian et al., “Laterality, region, and type of motor dysfunction correlate with cognitive impairment in Parkinson's disease,” Movement Disorders, vol. 22, no. 1, pp. 141–145, 2007.
[19]
J. Y. Oh, Y.-S. Kim, B. H. Choi, E. H. Sohn, and A. Y. Lee, “Relationship between clinical phenotypes and cognitive impairment in Parkinson's disease (PD),” Archives of Gerontology and Geriatrics, vol. 49, no. 3, pp. 351–354, 2009.
[20]
M. F. Gago, M. C. Garrett, M. R. Fonseca et al., “How do cognitive and axial motor signs correlate in Parkinson's disease? A 6-year prospective study,” Journal of Neurology, vol. 256, no. 10, pp. 1655–1662, 2009.
[21]
H. Braak, U. Rüb, and K. del Tredici, “Cognitive decline correlates with neuropathological stage in Parkinson's disease,” Journal of the Neurological Sciences, vol. 248, no. 1-2, pp. 255–258, 2006.
[22]
B. Dubois, D. Burn, C. Goetz et al., “Diagnostic procedures for Parkinson's disease dementia: recommendations from the movement disorder society task force,” Movement Disorders, vol. 22, no. 16, pp. 2314–2324, 2007.
[23]
B. Dubois, E. Tolosa, R. Katzenschlager, et al., “Donepezil in Parkinson's disease dementia: a randomized, double-blind efficacy and safety study,” Movement Disorders, vol. 27, no. 10, pp. 1230–1238, 2012.
[24]
B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a frontal assessment battery at bedside,” Neurology, vol. 55, no. 11, pp. 1621–1626, 2000.
[25]
G. Kenangil, D. N. Orken, E. Ur, and H. Forta, “Frontal assessment battery in patients with Parkinson disease in a Turkish population,” Cognitive and Behavioral Neurology, vol. 23, no. 1, pp. 26–28, 2010.
[26]
R. Takagi, Y. Kajimoto, S. Kamiyoshi, H. Miwa, and T. Kondo, “The frontal assessment battery at bedside (FAB) in patients with Parkinson's disease,” No To Shinkei, vol. 54, no. 10, pp. 897–902, 2002.
[27]
E. Guedj, G. Allali, C. Goetz et al., “Frontal assessment battery is a marker of dorsolateral and medial frontal functions: a SPECT study in frontotemporal dementia,” Journal of the Neurological Sciences, vol. 273, no. 1-2, pp. 84–87, 2008.
[28]
J. Morgado, C. S. Rocha, C. Maruta, M. Guerreiro, and I. P. Martins, “Novos valores Normativos do mini-mental state examination,” Sinapse, vol. 9, no. 2, pp. 10–16, 2009.
[29]
C. F. Lima, L. P. Meireles, R. Fonseca, S. L. Castro, and C. Garrett, “The frontal assessment battery (FAB) in Parkinson's disease and correlations with formal measures of executive functioning,” Journal of Neurology, vol. 255, no. 11, pp. 1756–1761, 2008.
[30]
A. Iavarone, B. Ronga, L. Pellegrino et al., “The frontal assessment battery (FAB): normative data from an Italian sample and performances of patients with Alzheimer's disease and frontotemporal dementia,” Functional Neurology, vol. 19, no. 3, pp. 191–195, 2004.
[31]
T. H. Kim, Y. Huh, J. Y. Choe et al., “Korean version of frontal assessment battery: psychometric properties and normative data,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 4, pp. 363–370, 2010.
[32]
A. Siderowf, M. McDermott, K. Kieburtz, K. Blindauer, S. Plumb, and I. Shoulson, “Test-retest reliability of the unified Parkinson's disease rating scale in patients with early Parkinson's disease: results from a multicenter clinical trial,” Movement Disorders, vol. 17, no. 4, pp. 758–763, 2002.
[33]
M. P. McDermott, J. Jankovic, J. Carter et al., “Factors predictive of the need for levodopa therapy in early, untreated Parkinson's disease. The Parkinson Study Group,” Archives of Neurology, vol. 52, no. 6, pp. 565–570, 1995.
[34]
O. Spreen and E. Strauss, A Compendium of Neuropsychological Tests: Administration, Norms and Commentary, Oxford University press, New York, NY, USA, 1998.
[35]
D. Aarsland, K. Andersen, J. P. Larsen et al., “The rate of cognitive decline in Parkinson disease,” Archives of Neurology, vol. 61, no. 12, pp. 1906–1911, 2004.
[36]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorder, American Psychological Association, Washington, DC, USA, 4th edition, 1994.
[37]
N. Kandiah, K. Narasimhalu, P.-N. Lau, S.-H. Seah, W. L. Au, and L. C. S. Tan, “Cognitive decline in early Parkinson's disease,” Movement Disorders, vol. 24, no. 4, pp. 605–608, 2009.
[38]
D. Aarsland, G. Muniz, and F. Matthews, “Nonlinear decline of mini-mental state examination in Parkinson's disease,” Movement Disorders, vol. 26, no. 2, pp. 334–337, 2011.
[39]
C. H. Williams-Gray, J. R. Evans, A. Goris et al., “The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort,” Brain, vol. 132, no. 11, pp. 2958–2969, 2009.
[40]
S. Lessig, D. Nie, R. Xu, et al., “Changes on brief cognitive instruments over time in Parkinson's disease,” Movement Disorders, vol. 27, no. 9, pp. 1125–1128, 2012.
[41]
T. Azuma, R. F. Cruz, K. A. Bayles, C. K. Tomoeda, and E. B. Montgomery Jr., “A longitudinal study of neuropsychological change in individuals with Parkinson's disease,” International Journal of Geriatric Psychiatry, vol. 18, no. 12, pp. 1115–1120, 2003.
[42]
G. Levy, M.-X. Tang, L. J. Cote et al., “Motor impairment in PD: relationship to incident dementia and age,” Neurology, vol. 55, no. 4, pp. 539–544, 2000.
[43]
D. Aarsland, K. Andersen, J. P. Larsen, A. Lolk, H. Nielsen, and P. Kragh-S?rensen, “Risk of dementia in Parkinson's disease: a community-based, prospective study,” Neurology, vol. 56, no. 6, pp. 730–736, 2001.
[44]
C. H. Williams-Gray, T. Foltynie, C. E. G. Brayne, T. W. Robbins, and R. A. Barker, “Evolution of cognitive dysfunction in an incident Parkinson's disease cohort,” Brain, vol. 130, no. 7, pp. 1787–1798, 2007.
[45]
E. Y. Uc, M. P. McDermott, K. S. Marder et al., “Incidence of and risk factors for cognitive impairment in an early parkinson disease clinical trial cohort,” Neurology, vol. 73, no. 18, pp. 1469–1477, 2009.
[46]
G. Fénelon, F. Mahieux, R. Huon, and M. Ziégler, “Hallucinations in Parkinson's disease. Prevalence, phenomenology and risk factors,” Brain, vol. 123, no. 4, pp. 733–745, 2000.
[47]
N. Ibarretxe-Bilbao, B. Ramirez-Ruiz, C. Junque et al., “Differential progression of brain atrophy in Parkinson's disease with and without visual hallucinations,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 6, pp. 650–657, 2010.
[48]
G. Alves, J. P. Larsen, M. Emre, T. Wentzel-Larsen, and D. Aarsland, “Changes in motor subtype and risk for incident dementia in Parkinson's disease,” Movement Disorders, vol. 21, no. 8, pp. 1123–1130, 2006.
[49]
J. Pagonabarraga, J. Kulisevsky, G. Llebaria, C. García-Sánchez, B. Pascual-Sedano, and A. Gironell, “Parkinson's disease-cognitive rating scale: a new cognitive scale specific for Parkinson's disease,” Movement Disorders, vol. 23, no. 7, pp. 998–1005, 2008.