Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson’s disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. 1. Introduction Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder of the central nervous system (CNS), characterised by a gradual loss of dopaminergic neurotransmission. Cardinal symptoms of PD include tremor, bradykinesia, and rigidity. Levodopa (L-DOPA) is considered the standard of care for providing symptomatic relief in PD [1]. However, long-term L-DOPA treatment leads to the appearance of motor complications in the majority of responding patients and severely affects their quality of life [2]. After 9 years of L-DOPA treatment, ~90% of PD patients experience dyskinesia [3]. The dyskinesia that develops is often a combination of choreic and dystonic abnormal involuntary movements, collectively termed L-DOPA-induced dyskinesia (PD-LID). Once PD-LID is established, increasing the L-DOPA dose typically worsens dyskinesia and this may prevent the use of L-DOPA at optimal doses required to control motor fluctuations. There are currently no licensed therapies for the treatment of PD-LID, although a number of clinical strategies are employed including adding dopamine agonists, monoamine oxidase inhibitors, adenosine (2A) receptor antagonists, catechol-O-methyl transferase inhibitors, and anticholinergic drugs as part of a L-DOPA-sparing
References
[1]
N. B. Mercuri and G. Bernardi, “The “magic” of L-dopa: why is it the gold standard Parkinson's disease therapy?” Trends in Pharmacological Sciences, vol. 26, no. 7, pp. 341–344, 2005.
[2]
G. Fabbrini, J. M. Brotchie, F. Grandas, M. Nomoto, and C. G. Goetz, “Levodopa-induced dyskinesias,” Movement Disorders, vol. 22, no. 10, pp. 1379–1389, 2007.
[3]
J. E. Ahlskog and M. D. Muenter, “Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature,” Movement Disorders, vol. 16, no. 3, pp. 448–458, 2001.
[4]
S. Cristina, R. Zangaglia, F. Mancini, E. Martignoni, G. Nappi, and C. Pacchetti, “High-dose ropinirole in advanced Parkinson's disease with severe dyskinesias,” Clinical Neuropharmacology, vol. 26, no. 3, pp. 146–150, 2003.
[5]
A. Facca and J. Sanchez-Ramos, “High-dose pergolide monotherapy in the treatment of severe levodopa-induced dyskinesias,” Movement Disorders, vol. 11, no. 3, pp. 327–329, 1996.
[6]
M. Müngersdorf, U. Sommer, M. Sommer, and H. Reichmann, “High-dose therapy with ropinirole in patients with Parkinson's disease,” Journal of Neural Transmission, vol. 108, no. 11, pp. 1309–1317, 2001.
[7]
J. Kulisevsky and M. Poyurovsky, “Adenosine A2a-receptor antagonism and pathophysiology of Parkinson's disease and drug-induced movement disorders,” European Neurology, vol. 67, no. 1, pp. 4–11, 2012.
[8]
J. Brotchie, “Antidyskinetic actions of amantadine in Parkinson's disease: are benefits maintained in the long term?” Expert Review of Neurotherapeutics, vol. 10, no. 6, pp. 871–873, 2010.
[9]
N. Tambasco, S. Simoni, E. Marsili et al., “Clinical aspects and management of levodopa-induced dyskinesia,” Parkinson's Disease, vol. 2012, Article ID 745947, 12 pages, 2012.
[10]
T. N. Chase and J. D. Oh, “Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism,” Trends in Neurosciences, vol. 23, no. 10, pp. S86–S91, 2000.
[11]
F. Calon, A. H. Rajput, O. Hornykiewicz, P. J. Bédard, and T. Di Paolo, “Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease,” Neurobiology of Disease, vol. 14, no. 3, pp. 404–416, 2003.
[12]
K. A. Johnson, P. J. Conn, and C. M. Niswender, “Glutamate receptors as therapeutic targets for Parkinson's disease,” CNS and Neurological Disorders, vol. 8, no. 6, pp. 475–491, 2009.
[13]
P. Jenner, “Molecular mechanisms of L-DOPA-induced dyskinesia,” Nature Reviews Neuroscience, vol. 9, no. 9, pp. 665–677, 2008.
[14]
J. Brotchie and C. Fitzer-Attas, “Mechanisms compensating for dopamine loss in early Parkinson disease,” Neurology, vol. 72, no. 7, pp. S32–S38, 2009.
[15]
I. Aubert, C. Guigoni, K. H?kansson et al., “Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia,” Annals of Neurology, vol. 57, no. 1, pp. 17–26, 2005.
[16]
M. M. Iravani, A. C. Mccreary, and P. Jenner, “Striatal plasticity in Parkinson's disease and L-DOPA induced dyskinesia,” Parkinsonism and Related Disorders, vol. 18, no. 1, supplement, pp. S123–S125, 2012.
[17]
M. M. Iravani and P. Jenner, “Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation,” Journal of Neural Transmission, vol. 118, no. 12, pp. 1661–1690, 2011.
[18]
A. Berthet and E. Bezard, “Dopamine receptors and l-dopa-induced dyskinesia,” Parkinsonism and Related Disorders, vol. 15, no. 4, supplement, pp. S8–S12, 2010.
[19]
F. Blandini, R. H. P. Porter, and J. T. Greenamyre, “Glutamate and Parkinson's disease,” Molecular Neurobiology, vol. 12, no. 1, pp. 73–94, 1996.
[20]
M. A. Cenci, “Dopamine dysregulation of movement control in l-DOPA-induced dyskinesia,” Trends in Neurosciences, vol. 30, no. 5, pp. 236–243, 2007.
[21]
E. Esposito, V. Di Matteo, and G. Di Giovanni, “Death in the substantia nigra: a motor tragedy,” Expert Review of Neurotherapeutics, vol. 7, no. 6, pp. 677–697, 2007.
[22]
M. A. Cenci, K. E. Ohlin, and D. Rylander, “Plastic effects of L-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia,” Parkinsonism and Related Disorders, vol. 15, supplement 3, pp. S59–S63, 2009.
[23]
A. H. Rajput, M. E. Fenton, S. Birdi, and R. Macaulay, “Is levodopa toxic to human substantia nigra?” Movement Disorders, vol. 12, no. 5, pp. 634–638, 1997.
[24]
S. Boyce, N. M. J. Rupniak, M. J. Steventon, and S. D. Iversen, “Nigrostriatal damage is required for induction of dyskinesias by L-DOPA in squirrel monkeys,” Clinical Neuropharmacology, vol. 13, no. 5, pp. 448–458, 1990.
[25]
S. Nakanishi, “Molecular diversity of glutamate receptors and implications for brain function,” Science, vol. 258, no. 5082, pp. 597–603, 1992.
[26]
C. M. Niswender and P. J. Conn, “Metabotropic glutamate receptors: physiology, pharmacology, and disease,” Annual Review of Pharmacology and Toxicology, vol. 50, pp. 295–322, 2010.
[27]
N. Hovels?, F. Sotty, L. P. Montezinho, P. S. Pinheiro, K. F. Herrik, and A. M?rk, “Therapeutic potential of metabotropic glutamate receptor modulators,” Current Neuropharmacology, vol. 10, no. 1, pp. 12–48, 2012.
[28]
S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010.
[29]
K. Tayarani-Binazir, M. J. Jackson, S. Rose, A. C. McCreary, and P. Jenner, “The partial dopamine agonist pardoprunox (SLV308) administered in combination with l-dopa improves efficacy and decreases dyskinesia in MPTP treated common marmosets,” Experimental Neurology, vol. 226, no. 2, pp. 320–327, 2010.
[30]
B. Zadow and W. J. Schmidt, “The AMPA antagonists NBQX and GYKI 52466 do not counteract neuroleptic- induced catalepsy,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 349, no. 1, pp. 61–65, 1994.
[31]
P.-A. Loschmann, K. W. Lange, M. Kunow et al., “Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-Dopa in models of Parkinson's disease,” Journal of Neural Transmission, vol. 3, no. 3, pp. 203–213, 1991.
[32]
P. A. Loschmann, M. Kunow, and H. Wachtel, “Synergism of NBQX with dopamine agonists in the 6-OHDA rat model of Parkinson's disease,” Journal of Neural Transmission, Supplement, no. 38, pp. 55–64, 1992.
[33]
J. Maj, Z. Rogoz, G. Skuza, and K. Kolodziejczyk, “Some central effects of GYKI 52466, a non-competitive AMPA receptor antagonist,” Polish Journal of Pharmacology, vol. 47, no. 6, pp. 501–507, 1995.
[34]
H. Wachtel, M. Kunow, and P.-A. Loschmann, “NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy- piperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats,” Neuroscience Letters, vol. 142, no. 2, pp. 179–182, 1992.
[35]
T. Klockgether, L. Turski, T. Honore et al., “The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys,” Annals of Neurology, vol. 30, no. 5, pp. 717–723, 1991.
[36]
C. Marin, A. Jimenez, M. Bonastre, T. N. Chase, and E. Tolosa, “Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats,” Synapse, vol. 36, no. 4, pp. 267–274, 2000.
[37]
Z. Juranyi, N. Sziray, B. Marko, G. Levay, and L. G. Harsing Jr., “AMPA receptor blockade potentiates the stimulatory effect of L-DOPA on dopamine release in dopamine-deficient corticostriatal slice preparation,” Critical Reviews in Neurobiology, vol. 16, no. 1-2, pp. 129–139, 2004.
[38]
K. Megyeri, B. Marko, N. Sziray et al., “Effects of 2,3-benzodiazepine AMPA receptor antagonists on dopamine turnover in the striatum of rats with experimental parkinsonism,” Brain Research Bulletin, vol. 71, no. 5, pp. 501–507, 2007.
[39]
J. M. Brotchie, “Nondopaminergic mechanisms in levodopa-induced dyskinesia,” Movement Disorders, vol. 20, no. 8, pp. 919–931, 2005.
[40]
C. Marin, A. Jimnez, M. Bonastre et al., “LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats,” Synapse, vol. 42, no. 1, pp. 40–47, 2001.
[41]
S. Konitsiotis, P. J. Blanchet, L. Verhagen, E. Lamers, and T. N. Chase, “AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys,” Neurology, vol. 54, no. 8, pp. 1589–1595, 2000.
[42]
Y. Hashizume, M. Ohgoh, M. Ueno, T. Hanada, and Y. Nishizawa, “Effect of perampanel, a selective AMPA receptor antagonist, on L-DOPA-induced rotational behavior in L-DOPA primed 6-OHDA hemiparkinsonian rats,” in Proceedings of the Annual Meeting of the American Academy of Neurology, P06.102, 2008.
[43]
E. Mizuta, M. Ueno, T. Hanada, and S. Kuno, “Effects of perampanel, a selective AMPA receptor antagonist, on L-DOPA induced dyskinesia in MPTP-treated cynomolgus monkeys,” in Proceedings of the Annual Meeting of the American Academy of Neurology, P06.101, 2008.
[44]
K. Eggert, D. Squillacote, P. Barone et al., “Safety and efficacy of perampanel in advanced parkinson's disease: a randomized, placebo-controlled study,” Movement Disorders, vol. 25, no. 7, pp. 896–905, 2010.
[45]
A. Lees, S. Fahn, K. M. Eggert et al., “Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson's disease,” Movement Disorders, vol. 27, no. 2, pp. 284–288, 2012.
[46]
O. Rascol, P. Barone, M. Behari et al., “Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone,” Clinical Neuropharmacology, vol. 35, no. 1, pp. 15–20, 2012.
[47]
B. Picconi, G. Piccoli, and P. Calabresi, “Synaptic dysfunction in Parkinson's disease,” Advances in Experimental Medicine and Biology, vol. 970, pp. 553–572, 2012.
[48]
P. K. Sonsalla, D. S. Albers, and G. D. Zeevalk, “Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism,” Amino Acids, vol. 14, no. 1–3, pp. 69–74, 1998.
[49]
T. N. Chase and J. D. Oh, “Striatal mechanisms and pathogenesis of Parkinsonian signs and motor complications,” Annals of Neurology, vol. 47, no. 4, pp. S122–S130, 2000.
[50]
J. E. Nash, S. H. Fox, B. Henry et al., “Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson's disease,” Experimental Neurology, vol. 165, no. 1, pp. 136–142, 2000.
[51]
B. Gomez-Mancilla and P. J. Bedard, “Effect of nondopaminergic drugs on L-DOPA-induced dyskinesias in MPTP- treated monkeys,” Clinical Neuropharmacology, vol. 16, no. 5, pp. 418–427, 1993.
[52]
P. J. Blanchet, S. Konitsiotis, E. R. Whittemore, Z. L. Zhou, R. M. Woodward, and T. N. Chase, “Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl- tetrahydropyridine monkeys,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1034–1040, 1999.
[53]
A. H. Tahar, L. Grégoire, A. Darré, N. Bélanger, L. Meltzer, and P. J. Bédard, “Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys,” Neurobiology of Disease, vol. 15, no. 2, pp. 171–176, 2004.
[54]
S. M. Papa and T. N. Chase, “Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys,” Annals of Neurology, vol. 39, no. 5, pp. 574–578, 1996.
[55]
M. Morissette, M. Dridi, F. Calon et al., “Prevention of levodopa-induced dyskinesias by a selective NRA1/2B N-methyl-D-aspartate receptor antagonist in Parkinsonian monkeys: implication of preproenkephalin,” Movement Disorders, vol. 21, no. 1, pp. 9–17, 2006.
[56]
R. Dall'Olio, R. Rimondini, and O. Gandolfi, “The competitive NMDA antagonists CGP 43487 and APV potentiate dopaminergic function,” Psychopharmacology, vol. 118, no. 3, pp. 310–315, 1995.
[57]
T. Klockgether and L. Turski, “NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats,” Annals of Neurology, vol. 28, no. 4, pp. 539–546, 1990.
[58]
F. Bibbiani, J. D. Oh, A. Kielaite, M. A. Collins, C. Smith, and T. N. Chase, “Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD,” Experimental Neurology, vol. 196, no. 2, pp. 422–429, 2005.
[59]
G. Riahi, M. Morissette, M. Parent, and T. Di Paolo, “Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias,” European Journal of Neuroscience, vol. 33, no. 10, pp. 1823–1831, 2011.
[60]
M. A. Paquette, A. A. Martinez, T. Macheda et al., “Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson's disease: role of NMDA vs. 5-HT1A receptors,” European Journal of Neuroscience, vol. 36, no. 9, pp. 3224–3234, 2012.
[61]
M. Morissette, M. Dridi, F. Calon et al., “Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: effect on adenosine A2a receptors,” Synapse, vol. 60, no. 3, pp. 239–250, 2006.
[62]
I. J. Mitchell and C. B. Carroll, “Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action,” Neuroscience and Biobehavioral Reviews, vol. 21, no. 4, pp. 469–475, 1997.
[63]
K. Steece-Collier, L. K. Chambers, S. S. Jaw-Tsai, F. S. Menniti, and J. T. Greenamyre, “Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit- containing N-methyl-D-aspartate receptors,” Experimental Neurology, vol. 163, no. 1, pp. 239–243, 2000.
[64]
P. Paoletti and J. Neyton, “NMDA receptor subunits: function and pharmacology,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 39–47, 2007.
[65]
M. Horstink, E. Tolosa, U. Bonuccelli et al., “Review of the therapeutic management of Parkinson's disease. Report of a joint task force of the European Federation of Neurological Societies (EFNS) and the Movement Disorder Society-European Section (MDS-ES). Part II: late (complicated) Parkinson's disease,” European Journal of Neurology, vol. 13, no. 11, pp. 1186–1202, 2006.
[66]
R. Pahwa, S. A. Factor, K. E. Lyons et al., “Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology,” Neurology, vol. 66, no. 7, pp. 983–995, 2006.
[67]
P. J. Blanchet, S. Konitsiotis, and T. N. Chase, “Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys,” Movement Disorders, vol. 13, no. 5, pp. 798–802, 1998.
[68]
A. Dekundy, M. Lundblad, W. Danysz, and M. A. Cenci, “Modulation of l-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model,” Behavioural Brain Research, vol. 179, no. 1, pp. 76–89, 2007.
[69]
P. Del Dotto, N. Pavese, G. Gambaccini et al., “Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study,” Movement Disorders, vol. 16, no. 3, pp. 515–520, 2001.
[70]
F. P. Da Silva-Júnior, P. Braga-Neto, F. Sueli Monte, and V. Meireles Sales De Bruin, “Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study,” Parkinsonism and Related Disorders, vol. 11, no. 7, pp. 449–452, 2005.
[71]
H. Sawada, T. Oeda, S. Kuno et al., “Amantadine for dyskinesias in parkinson's disease: a randomized controlled trial,” PLoS One, vol. 5, no. 12, Article ID e15298, 2010.
[72]
L. V. Metman, P. Del Dotto, P. Van Den Munckhof, J. Fang, M. M. Mouradian, and T. Chase, “Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease,” Neurology, vol. 50, no. 5, pp. 1323–1326, 1998.
[73]
B. Elahi, N. Phielipp, and R. Chen, “N-Methyl-D-Aspartate antagonists in levodopa induced dyskinesia: a meta-analysis,” The Canadian Journal of Neurological Sciences, vol. 39, no. 4, pp. 465–472, 2012.
[74]
C. G. Goetz, G. T. Stebbins, K. A. Chung et al., “Which dyskinesia scale best detects treatment response? A double-blind placebo controlled multicenter trial using multiple dyskinesia outcomes,” in Proceedings of the 16th International Congress of Parkinson's Disease and Movement Disorders, abstract LBA 11, 2012.
[75]
E. Wolf, K. Seppi, R. Katzenschlager et al., “Long-term antidyskinetic efficacy of amantadine in Parkinson's disease,” Movement Disorders, vol. 25, no. 10, pp. 1357–1363, 2010.
[76]
F. Ory-Magne, C. Thalamas, M. Galitsky et al., “Long-term effects of amantadine in Parkinsonian (AMANDYSK),” Movement Disorders, vol. 27, supplement 14, article 12, 2012.
[77]
S. R. Schwid, “A multicenter randomized controlled trial of remacemide hydrochloride as monotherapy for PD,” Neurology, vol. 54, no. 8, pp. 1583–1588, 2000.
[78]
J. A. De Marcaida, “Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease,” Archives of Neurology, vol. 58, no. 10, pp. 1660–1668, 2001.
[79]
C. E. Clarke, J. A. Cooper, and T. A. H. Holdich, “A randomized, double-blind, placebo-controlled, ascending-dose tolerability and safety study of remacemide as adjuvant therapy in Parkinson's disease with response fluctuations,” Clinical Neuropharmacology, vol. 24, no. 3, pp. 133–138, 2001.
[80]
J. L. Montastruc, O. Rascol, J. M. Senard, and A. Rascol, “A pilot study of N-Methyl-D-Aspartate (NMDA) antagonist in Parkinson's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 55, no. 7, pp. 630–631, 1992.
[81]
J. G. Nutt, S. A. Gunzler, T. Kirchhoff et al., “Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and parkinsonism,” Movement Disorders, vol. 23, no. 13, pp. 1860–1866, 2008.
[82]
S. R. Schwid, “A randomized, controlled trial of remacemide for motor fluctuations in parkinson's disease: parkinson study group,” Neurology, vol. 56, no. 4, pp. 455–462, 2001.
[83]
D. Rylander, A. Recchia, F. Mela, A. Dekundy, W. Danysz, and M. A. Cenci Nilsson, “Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling,” Journal of Pharmacology and Experimental Therapeutics, vol. 330, no. 1, pp. 227–235, 2009.
[84]
R. Shigemoto and N. Mizuno, “Metabotropic glutamate receptors—immunocytochemical and in situ hybridization analysis,” in Handbook of Chemical Neuroanatomy, O. P. Ottersen and J. Storm-Mathisen, Eds., vol. 18, pp. 63–98, Elsevier, 2000.
[85]
P. J. Conn, G. Battaglia, M. J. Marino, and F. Nicoletti, “Metabotropic glutamate receptors in the basal ganglia motor circuit,” Nature Reviews Neuroscience, vol. 6, no. 10, pp. 787–798, 2005.
[86]
C. Romano, M. A. Sesma, C. T. McDonald, K. O'Malley, A. N. Van den Pol, and J. W. Olney, “Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain,” Journal of Comparative Neurology, vol. 355, no. 3, pp. 455–469, 1995.
[87]
W. P. J. M. Spooren, F. Gasparini, R. Bergmann, and R. Kuhn, “Effects of the prototypical mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats,” European Journal of Pharmacology, vol. 406, no. 3, pp. 403–410, 2000.
[88]
N. Breysse, C. Baunez, W. Spooren, F. Gasparini, and M. Amalric, “Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of Parkinsonism,” Journal of Neuroscience, vol. 22, no. 13, pp. 5669–5678, 2002.
[89]
G. Levandis, E. Bazzini, M.-T. Armentero, G. Nappi, and F. Blandini, “Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease,” Neurobiology of Disease, vol. 29, no. 1, pp. 161–168, 2008.
[90]
K. Ossowska, J. Konieczny, S. Wolfarth, and A. Pilc, “MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian-like effects in rats,” Neuropharmacology, vol. 49, no. 4, pp. 447–455, 2005.
[91]
P. Samadi, L. Grégoire, M. Morissette et al., “mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys,” Neurobiology of Aging, vol. 29, no. 7, pp. 1040–1051, 2008.
[92]
B. Ouattara, L. Grégoire, M. Morissette et al., “Metabotropic glutamate receptor type 5 in levodopa-induced motor complications,” Neurobiology of Aging, vol. 32, no. 7, pp. 1286–1295, 2011.
[93]
C. Konradi, J. E. Westin, M. Carta et al., “Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia,” Neurobiology of Disease, vol. 17, no. 2, pp. 219–236, 2004.
[94]
H. Awad, G. W. Hubert, Y. Smith, A. I. Levey, and P. J. Conn, “Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus,” Journal of Neuroscience, vol. 20, no. 21, pp. 7871–7879, 2000.
[95]
A. Pisani, P. Calabresi, D. Centonze, and G. Bernardi, “Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones,” British Journal of Pharmacology, vol. 120, no. 6, pp. 1007–1014, 1997.
[96]
M. R. Domenici, R. Pepponi, A. Martire, M. T. Tebano, R. L. Potenza, and P. Popoli, “Permissive role of adenosine A2a receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum,” Journal of Neurochemistry, vol. 90, no. 5, pp. 1276–1279, 2004.
[97]
A. Nishi, F. Liu, S. Matsuyama et al., “Metabotropic mGlu5 receptors regulate adenosine A2a receptor signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1322–1327, 2003.
[98]
P. Popoli, A. Pèzzola, M. Torvinen et al., “The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the rat striatum: interactions with adenosine A2a receptors,” Neuropsychopharmacology, vol. 25, no. 4, pp. 505–513, 2001.
[99]
Z. Díaz-Cabiale, M. Vivó, A. Del Arco et al., “Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2a and dopamine D2 receptors,” Neuroscience Letters, vol. 324, no. 2, pp. 154–158, 2002.
[100]
M. P. Hill, S. G. McGuire, A. R. Crossman, and J. M. Brotchie, “The mGlu5 Receptor antagonist SIB-1830 reduces L-Dopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease,” in Proceedings of the Neuroscience Meeting Planner, Society for Neuroscience, San Diego, Calif, USA, 2001.
[101]
M. A. Varney, N. D. P. Cosford, C. Jachec et al., “SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 1, pp. 170–181, 1999.
[102]
J. M. Mathiesen, N. Svendsen, H. Br?uner-Osborne, C. Thomsen, and M. T. Ramirez, “Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP,” British Journal of Pharmacology, vol. 138, no. 6, pp. 1026–1030, 2003.
[103]
A. Dekundy, M. Pietraszek, D. Schaefer, M. A. Cenci, and W. Danysz, “Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson's disease,” Brain Research Bulletin, vol. 69, no. 3, pp. 318–326, 2006.
[104]
F. Mela, M. Marti, A. Dekundy, W. Danysz, M. Morari, and M. A. Cenci, “Antagonism of metabotropic glutamate receptor type 5 attenuates L-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease,” Journal of Neurochemistry, vol. 101, no. 2, pp. 483–497, 2007.
[105]
N. Morin, L. Grégoire, B. Gomez-Mancilla, F. Gasparini, and T. Di Paolo, “Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys,” Neuropharmacology, vol. 58, no. 7, pp. 981–986, 2010.
[106]
N. Morin, L. Grégoire, M. Morissette et al., “MPEP, an mGlu5 receptor antagonist, reduces the development of l-DOPA-induced motor complications in de novo parkinsonian monkeys: biochemical correlates,” Neuropharmacology, pp. 355–364, 2012.
[107]
L. Grégoire, N. Morin, B. Ouattara et al., “The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys,” Parkinsonism and Related Disorders, vol. 17, no. 4, pp. 270–276, 2011.
[108]
D. Berg, J. Godau, C. Trenkwalder et al., “AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials,” Movement Disorders, vol. 26, no. 7, pp. 1243–1250, 2011.
[109]
F. Stocchi, A. Destee, N. Hattori et al., “A 13-week, double-blind, placebo-controlled study of AFQ056, a metabotropic glutamate receptor 5 antagonist in Parkinson's disease patients with moderate-to-severe L-dopa-induced dyskinesias,” in Proceedings of the 15th International Congress of Parkinson's Disease and Movement Disorders, vol. 2011, Toronto, Canada, 2011.
[110]
F. Tison, F. Durif, J. C. Corvol et al., “Safety, tolerability and anti-dyskinetic efficacy of dipaglurant, a novel mGluR5 negative allosteric modulator (NAM), in Parkinson's disease patients with levodopa-induced dyskinesia (LID),” in Proceedings of the 16th International Congress of Parkinson's Disease and Movement Disorders, vol. 2012, Dublin, Ireland, June2012.
[111]
M. Amalric, S. Lopez, C. Goudet et al., “Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease,” Neuropharmacology, vol. 66, pp. 53–64, 2013.
[112]
C. W. Lindsley and C. R. Hopkins, “Metabotropic glutamate receptor 4 (mGlu4)-positive allosteric modulators for the treatment of Parkinson's disease: historical perspective and review of the patent literature,” Expert Opinion on Therapeutic Patents, vol. 22, no. 5, pp. 461–481, 2012.
[113]
T. Matsui and H. Kita, “Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus,” Neuroscience, vol. 122, no. 3, pp. 727–737, 2003.
[114]
S. Lopez, N. Turle-Lorenzo, F. Acher, E. De Leonibus, A. Mele, and M. Amalric, “Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson's disease,” Journal of Neuroscience, vol. 27, no. 25, pp. 6701–6711, 2007.
[115]
C. Beurrier, S. Lopez, D. Révy et al., “Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism,” FASEB Journal, vol. 23, no. 10, pp. 3619–3628, 2009.
[116]
O. Valenti, M. J. Marino, M. Wittmann et al., “Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse,” Journal of Neuroscience, vol. 23, no. 18, pp. 7218–7226, 2003.
[117]
M. J. Marino, D. L. Williams Jr., J. A. O'Brien et al., “Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13668–13673, 2003.
[118]
G. Battaglia, C. L. Busceti, G. Molinaro et al., “Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” The Journal of Neuroscience, vol. 26, no. 27, pp. 7222–7229, 2006.
[119]
C. M. Niswender, K. A. Johnson, C. D. Weaver et al., “Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4,” Molecular Pharmacology, vol. 74, no. 5, pp. 1345–1358, 2008.
[120]
C. K. Jones, M. Bubser, A. D. Thompson et al., “The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 340, no. 2, pp. 404–421, 2012.
[121]
E. Le Poul, C. Boléa, F. Girard et al., “A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 343, no. 1, pp. 167–177, 2012.
[122]
B. Greco, S. Lopez, H. Van Der Putten, P. J. Flor, and M. Amalric, “Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson's disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 3, pp. 1064–1071, 2010.
[123]
K. A. Johnson, C. K. Jones, M. N. Tantawy et al., “The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson's disease,” Neuropharmacology, vol. 66, pp. 187–195, 2012.
[124]
D. D. Schoepp, R. A. Wright, L. R. Levine, B. Gaydos, and W. Z. Potter, “LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress,” Stress, vol. 6, no. 3, pp. 189–197, 2003.
[125]
B. J. Kinon, L. Zhang, B. A. Millen et al., “A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia,” Journal of Clinical Psychopharmacology, vol. 31, no. 3, pp. 349–355, 2011.
[126]
S. R. Bradley, M. J. Marino, M. Wittmann et al., “Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata,” Journal of Neuroscience, vol. 20, no. 9, pp. 3085–3094, 2000.
[127]
L. Dawson, A. Chadha, M. Megalou, and S. Duty, “The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat,” British Journal of Pharmacology, vol. 129, no. 3, pp. 541–546, 2000.
[128]
P. Samadi, L. Grégoire, M. Morissette et al., “Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias,” Neuropharmacology, vol. 54, no. 2, pp. 258–268, 2008.
[129]
P. Samadi, A. Rajput, F. Calon et al., “Metabotropic glutamate receptor II in the brains of parkinsonian patients,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 4, pp. 374–382, 2009.
[130]
T. K. Murray, M. J. Messenger, M. A. Ward et al., “Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson's disease,” Pharmacology Biochemistry and Behavior, vol. 73, no. 2, pp. 455–466, 2002.
[131]
M. P. Johnson, E. S. Nisenbaum, T. H. Large, R. Emkey, M. Baez, and A. E. Kingston, “Allosteric modulators of metabotropic glutamate receptors: lessons learnt from mGlu1, mGlu2 and mGlu5 potentiators and antagonists,” Biochemical Society Transactions, vol. 32, no. 5, pp. 881–887, 2004.
[132]
P. L. Johnson, S. D. Fitz, E. A. Engleman, K. A. Svensson, J. M. Schkeryantz, and A. Shekhar, “Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats,” Journal of Psychopharmacology, vol. 27, no. 2, pp. 152–161, 2012.