全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Methamphetamine and Parkinson's Disease

DOI: 10.1155/2013/308052

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles. 1. Parkinson’s Disease Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting an estimated 7 to 10 million people worldwide. Incidence of the disease increases with age. PD usually affects people over the age of 50, but an estimated 4% of PD cases is diagnosed before the age of 50. Early in the course of the disease, the most obvious symptoms are movement-related. These include shaking, rigidity, slowness of movement, and difficulty with walking and gait. Later, cognitive and behavioral problems may arise, with dementia commonly occurring in the advanced stages of the disease. Other symptoms include sensory, sleep, and emotional problems. PD is caused by degeneration of midbrain dopaminergic neurons that project to the striatum. The loss of striatal dopamine is responsible for the major symptoms of the disease. Although a small proportion of cases can be attributed to known genetic factors, most cases of PD are idiopathic. While the aetiology of dopaminergic neuronal demise is elusive, a combination of genetic susceptibilities, age, and environmental factors seems to play a critical role [1]. Dopamine degeneration process in PD involves abnormal

References

[1]  B. Thomas and M. F. Beal, “Parkinson's disease,” Human Molecular Genetics, vol. 16, no. 2, pp. R183–R194, 2007.
[2]  UNODC, “World drug report,” Tech. Rep. E. 12.XI. 1, United Nations publication, 2012.
[3]  U. D. McCann, H. Kuwabara, A. Kumar et al., “Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users,” Synapse, vol. 62, no. 2, pp. 91–100, 2008.
[4]  D. E. Rusyniak, “Neurologic manifestations of chronic methamphetamine abuse,” Neurologic Clinics, vol. 29, no. 3, pp. 641–655, 2011.
[5]  S. Ares-Santos, N. Granado, and Oliva, “Dopamine D1 receptor deletion strongly reduces neurotoxic effects of methamphetamine,” Neurological Diseases, vol. 45, pp. 810–820, 2012.
[6]  N. Granado, S. Ares-Santos, E. O'Shea, C. Vicario-Abejón, M. I. Colado, and R. Moratalla, “Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine,” Neurotoxicity research, vol. 18, no. 1, pp. 48–58, 2010.
[7]  N. Granado, S. Ares-Santos, I. Oliva et al., “Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA,” Neurobiology of Disease, vol. 42, no. 3, pp. 391–403, 2011.
[8]  T. R. Guilarte, M. K. Nihei, J. L. McGlothan, and A. S. Howard, “Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity,” Neuroscience, vol. 122, no. 2, pp. 499–513, 2003.
[9]  I. N. Krasnova and J. L. Cadet, “Methamphetamine toxicity and messengers of death,” Brain Research Reviews, vol. 60, no. 2, pp. 379–407, 2009.
[10]  G. A. Ricaurte, C. R. Schuster, and L. S. Seiden, “Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study,” Brain Research, vol. 193, no. 1, pp. 153–163, 1980.
[11]  L. S. Seiden and K. E. Sabol, “Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction,” NIDA research monograph, vol. 163, pp. 251–276, 1996.
[12]  N. Granado, I. Escobedo, E. O'Shea, M. I. Colado, and R. Moratalla, “Early loss of dopaminergic terminals in striosomes after MDMA administration to mice,” Synapse, vol. 62, no. 1, pp. 80–84, 2008.
[13]  N. Granado, E. O'Shea, J. Bove, M. Vila, M. I. Colado, and R. Moratalla, “Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice,” Journal of Neurochemistry, vol. 107, no. 4, pp. 1102–1112, 2008.
[14]  J. P. O'Callaghan and D. B. Miller, “Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 2, pp. 741–751, 1994.
[15]  N. Granado, I. Lastres-Becker, S. Ares-Santos et al., “Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum,” Glia, vol. 59, pp. 1850–1863, 2011.
[16]  G. U. H?glinger, P. Rizk, M. P. Muriel et al., “Dopamine depletion impairs precursor cell proliferation in Parkinson disease,” Nature Neuroscience, vol. 7, no. 7, pp. 726–735, 2004.
[17]  E. Bezard, I. Gerlach, R. Moratalla, C. E. Gross, and R. Jork, “5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson's disease,” Neurobiology of Disease, vol. 23, no. 1, pp. 77–86, 2006.
[18]  W. P. Melega, M. J. Raleigh, D. B. Stout, G. Lacan, S. C. Huang, and M. E. Phelps, “Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-induced neurotoxicity in the vervet monkey,” Brain Research, vol. 766, no. 1-2, pp. 113–120, 1997.
[19]  P. Huot and A. Parent, “Dopaminergic neurons intrinsic to the striatum,” Journal of Neurochemistry, vol. 101, no. 6, pp. 1441–1447, 2007.
[20]  S. Darmopil, V. C. Mu?etón-Gómez, M. L. De Ceballos, M. Bernson, and R. Moratalla, “Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA,” European Journal of Neuroscience, vol. 27, no. 3, pp. 580–592, 2008.
[21]  I. Espadas, S. Darmopil, E. Verga?o-Vera et al., “L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function,” Neurobiology of Disease, vol. 48, pp. 271–281, 2012.
[22]  L. C. Schmued and J. F. Bowyer, “Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants,” Brain Research, vol. 759, no. 1, pp. 135–140, 1997.
[23]  H. Hirata and J. L. Cadet, “p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies,” Journal of Neurochemistry, vol. 69, no. 2, pp. 780–790, 1997.
[24]  P. K. Sonsalla, N. D. Jochnowitz, G. D. Zeevalk, J. A. Oostveen, and E. D. Hall, “Treatment of mice with methamphetamine produces cell loss in the substantia nigra,” Brain Research, vol. 738, no. 1, pp. 172–175, 1996.
[25]  H. I. Hurtig, J. Q. Trojanowski, J. Galvin et al., “Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson's disease,” Neurology, vol. 54, no. 10, pp. 1916–1921, 2000.
[26]  M. G. Murer and R. Moratalla, “Striatal signaling in L-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation,” Frontiers in Neuroanatomy, vol. 5, p. 51, 2011.
[27]  R. Moratalla, M. Xu, S. Tonegawa, and A. M. Graybiel, “Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14928–14933, 1996.
[28]  N. M. White and N. Hiroi, “Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6486–6491, 1998.
[29]  J. R. Crittenden, I. Cantuti-Castelvetri, E. Saka et al., “Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2892–2896, 2009.
[30]  M. M. Iravani, E. Syed, M. J. Jackson, L. C. Johnston, L. A. Smith, and P. Jenner, “A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets,” European Journal of Neuroscience, vol. 21, no. 4, pp. 841–854, 2005.
[31]  G. Figueredo-Cardenas, C. L. Harris, K. D. Anderson, and A. Reiner, “Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types,” Experimental Neurology, vol. 149, no. 2, pp. 356–372, 1998.
[32]  J. C. Hedreen and S. E. Folstein, “Early loss of neostriatal striosome neurons in Huntington's disease,” Journal of Neuropathology and Experimental Neurology, vol. 54, no. 1, pp. 105–120, 1995.
[33]  R. E. Burke and K. G. Baimbridge, “Relative loss of the striatal striosome compartment, defined by calbindin-D(28k) immunostaining, following developmental hypoxic-ischemic injury,” Neuroscience, vol. 56, no. 2, pp. 305–315, 1993.
[34]  L. Medina, G. Figueredo-Cardenas, J. D. Rothstein, and A. Reiner, “Differential abundance of glutamate transporter subtypes in amyotrophic lateral sclerosis (ALS)-vulnerable versus ALS-resistant brain stem motor cell groups,” Experimental Neurology, vol. 142, no. 2, pp. 287–295, 1996.
[35]  J. L. Cadet and C. Brannock, “Free radicals and the pathobiology of brain dopamine systems,” Neurochemistry International, vol. 32, no. 2, pp. 117–131, 1998.
[36]  P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007.
[37]  Y. Itzhak and C. Achat-Mendes, “Methamphetamine and MDMA (ecstasy) neurotoxicity: 'Of mice and men',” IUBMB Life, vol. 56, no. 5, pp. 249–255, 2004.
[38]  S. Z. Imam, G. D. Newport, Y. Itzhak et al., “Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase,” Journal of Neurochemistry, vol. 76, no. 3, pp. 745–749, 2001.
[39]  Y. Itzhak, J. L. Martin, and S. F. Ali, “Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice,” Synapse, vol. 34, no. 4, pp. 305–312, 1999.
[40]  J. F. Bowyer, B. Robinson, S. Ali, and L. C. Schmued, “Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure,” Synapse, vol. 62, no. 3, pp. 193–204, 2008.
[41]  X. Deng and J. L. Cadet, “Methamphetamine administration causes overexpression of nNOS in the mouse striatum,” Brain Research, vol. 851, no. 1-2, pp. 254–257, 1999.
[42]  F. Fumagalli, R. R. Gainetdinov, K. J. Valenzano, and M. G. Caron, “Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter,” Journal of Neuroscience, vol. 18, no. 13, pp. 4861–4869, 1998.
[43]  S. Ares-Santos, N. Granado, and R. Moratalla, “Role of dopamine receptors in the neurotoxicity of methamphetamine,” Journal of Internal Medicine. In press.
[44]  A. B. Martín, E. Fernandez-Espejo, B. Ferrer et al., “Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors,” Neuropsychopharmacology, vol. 33, no. 7, pp. 1667–1679, 2008.
[45]  N. Granado, O. Ortiz, L. M. Suárez et al., “D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-induced arc and zif268 expression in the hippocampus,” Cerebral Cortex, vol. 18, no. 1, pp. 1–12, 2008.
[46]  O. Ortiz, J. M. Delgado-García, I. Espadas et al., “Associative learning and CA3-CA1 synaptic plasticity are impaired in D 1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice,” Journal of Neuroscience, vol. 30, no. 37, pp. 12288–12300, 2010.
[47]  N. Madro?al, A. Gruart, O. Valverde, I. Espadas, R. Moratalla, and J. M. Delgado-García, “Involvement of cannabinoid CB1 receptor in associative learning and in hippocampal CA3-CA1 synaptic plasticity,” Cerebral Cortex, vol. 22, no. 3, pp. 550–566, 2012.
[48]  Y. J. Chen, Y. L. Liu, Q. Zhong, et al., “Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice,” Neuroscience Bulletin, vol. 28, no. 3, pp. 222–232, 2012.
[49]  J. Gon?alves, S. Baptista, M. V. Olesen, et al., “Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment,” Journal of Neurochemistry, vol. 123, no. 6, pp. 1041–1053, 2012.
[50]  T. R. Guilarte, “Is methamphetamine abuse a risk factor in Parkinsonism?” NeuroToxicology, vol. 22, no. 6, pp. 725–731, 2001.
[51]  B. Thrash, K. Thiruchelvan, M. Ahuja, V. Suppiramaniam, and M. Dhanasekaran, “Methamphetamine-induced neurotoxicity: the road to Parkinson's disease,” Pharmacological Reports, vol. 61, no. 6, pp. 966–977, 2009.
[52]  J. M. Wilson, K. S. Kalasinsky, A. I. Levey et al., “Striatal dopamine nerve terminal markers in human, chronic methamphetamine users,” Nature Medicine, vol. 2, no. 6, pp. 699–703, 1996.
[53]  U. D. McCann, D. F. Wong, F. Yokoi, V. Villemagne, R. F. Dannals, and G. A. Ricaurte, “Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428,” Journal of Neuroscience, vol. 18, no. 20, pp. 8417–8422, 1998.
[54]  N. D. Volkow, L. Chang, G. J. Wang et al., “Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence,” Journal of Neuroscience, vol. 21, no. 23, pp. 9414–9418, 2001.
[55]  N. D. Volkow, L. Chang, G. J. Wang et al., “Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers,” American Journal of Psychiatry, vol. 158, no. 3, pp. 383–389, 2001.
[56]  N. D. Volkow, L. Chang, G. J. Wang et al., “Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers,” American Journal of Psychiatry, vol. 158, no. 3, pp. 377–382, 2001.
[57]  L. Chang, D. Alicata, T. Ernst, and N. Volkow, “Structural and metabolic brain changes in the striatum associated with methamphetamine abuse,” Addiction, vol. 102, supplement 1, pp. 16–32, 2007.
[58]  Y. Sekine, Y. Ouchi, N. Takei et al., “Brain serotonin transporter density and aggression in abstinent methamphetamine abusers,” Archives of General Psychiatry, vol. 63, no. 1, pp. 90–100, 2006.
[59]  P. S. Fitzmaurice, J. Tong, M. Yazdanpanah, P. P. Liu, K. S. Kalasinsky, and S. J. Kish, “Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 2, pp. 703–709, 2006.
[60]  A. Mirecki, P. Fitzmaurice, L. Ang et al., “Brain antioxidant systems in human methamphetamine users,” Journal of Neurochemistry, vol. 89, no. 6, pp. 1396–1408, 2004.
[61]  Y. Sekine, Y. Ouchi, G. Sugihara et al., “Methamphetamine causes microglial activation in the brains of human abusers,” Journal of Neuroscience, vol. 28, no. 22, pp. 5756–5761, 2008.
[62]  O. Kitamura, T. Takeichi, E. L. Wang, I. Tokunaga, A. Ishigami, and S. I. Kubo, “Microglial and astrocytic changes in the striatum of methamphetamine abusers,” Legal Medicine, vol. 12, no. 2, pp. 57–62, 2010.
[63]  P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988.
[64]  E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009.
[65]  Y. Sekine, Y. Minabe, Y. Ouchi et al., “Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms,” American Journal of Psychiatry, vol. 160, no. 9, pp. 1699–1701, 2003.
[66]  P. M. Thompson, K. M. Hayashi, S. L. Simon et al., “Structural abnormalities in the brains of human subjects who use methamphetamine,” Journal of Neuroscience, vol. 24, no. 26, pp. 6028–6036, 2004.
[67]  L. Chang, T. Ernst, O. Speck et al., “Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users,” Psychiatry Research, vol. 114, no. 2, pp. 65–79, 2002.
[68]  A. Moszczynska, P. Fitzmaurice, L. Ang et al., “Why is parkinsonism not a feature of human methamphetamine users?” Brain, vol. 127, no. 2, pp. 363–370, 2004.
[69]  M. P. Caligiuri and C. Buitenhuys, “Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype?” Neuropsychopharmacology, vol. 30, no. 12, pp. 2125–2134, 2005.
[70]  H. Bernheimer, W. Birkmayer, and O. Hornykiewicz, “Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations,” Journal of the Neurological Sciences, vol. 20, no. 4, pp. 415–455, 1973.
[71]  S. J. Kish, K. Shannak, and O. Hornykiewicz, “Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications,” The New England Journal of Medicine, vol. 318, no. 14, pp. 876–880, 1988.
[72]  R. C. Callaghan, J. K. Cunningham, G. Sajeev, and S. J. Kish, “Incidence of Parkinson's disease among hospital patients with methamphetamine-use disorders,” Movement Disorders, vol. 25, no. 14, pp. 2333–2339, 2010.
[73]  R. C. Callaghan, J. K. Cunningham, J. Sykes, and S. J. Kish, “Increased risk of Parkinson's disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs,” Drug and Alcohol Dependence, vol. 120, pp. 35–40, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413