全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Compendium of Urinary Biomarkers Indicative of Glomerular Podocytopathy

DOI: 10.1155/2013/782395

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is well known that glomerular podocyte injury and loss are present in numerous nephropathies and that the pathophysiologic consecution of disease hinges upon the fate of the podocyte. While multiple factors play a hand in glomerulopathy progression, basic logic lends that if one monitors the podocyte’s status, that may reflect the status of disease. Recent investigations have focused on what one can elucidate from the noninvasive collection of urine, and have proven that certain, specific biomarkers of podocytes can be readily identified via varying techniques. This paper has brought together all described urinary biomarkers of podocyte injury and is made to provide a concise summary of their utility and testing in laboratory and clinical theatres. While promising in the potential that they hold as tools for clinicians and investigators, the described biomarkers require further comprehensive vetting in the form of larger clinical trials and studies that would give their value true weight. These urinary biomarkers are put forth as novel indicators of glomerular disease presence, disease progression, and therapeutic efficacy that in some cases may be more advantageous than the established parameters/measures currently used in practice. 1. Introduction The glomerulus is the functional unit of the kidney that creates from the afferent blood flow an ultrafiltrate, which passes through the remainder of the nephron for further modification. The glomerulus can be compared to a selective filter in that it discerns based on size and charge what passes on through to become the formed ultrafiltrate. This selectivity is intrinsic to the glomerular filtration apparatus and is dictated by the structural integrity of the three main components of which it is made: the capillary endothelium, the glomerular basement membrane (GBM), and the visceral epithelium overlying the GBM. Material that navigates through the glomerular filter must pass through these three components in that order to attain passage from the vascular capillary side into Bowman’s space. The visceral epithelial layer of the glomerulus is made up of podocytes: terminally differentiated cells that have formed foot processes that encircle the GBM. The foot processes interdigitate between one another, with the space between each laying the slit diaphragm: described as a zipper-like interaction of membrane proteins between adjacent podocyte foot processes [1]. The slit diaphragm is considered to be the size limiting component of the glomerular filtration apparatus: permitting material approximately under

References

[1]  R. Rodewald and M. J. Karnovsky, “Porous substructure of the glomerular slit diaphragm in the rat and mouse,” Journal of Cell Biology, vol. 60, no. 2, pp. 423–433, 1974.
[2]  J. Wartiovaara, L. G. Ofverstedt, J. Khoshnoodi et al., “Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron microscopy,” The Journal of Clinical Investigation, vol. 114, pp. 1475–1483, 2004.
[3]  J. Bariety, G. S. Hill, C. Mandet et al., “Glomerural epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis,” Nephrology Dialysis Transplantation, vol. 18, no. 9, pp. 1777–1784, 2003.
[4]  G. S. Hill, K. E. Karoui, A. Karras et al., “Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. I. Immunohistochemical studies,” Kidney International, vol. 79, no. 6, pp. 635–642, 2011.
[5]  A. H. J. Salmon, C. R. Neal, and S. J. Harper, “New aspects of glomerular filtration barrier structure and function: five layers (at least) not three,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 3, pp. 197–205, 2009.
[6]  L. Barisoni and J. B. Kopp, “Update in podocyte biology: putting one's best foot forward,” Current Opinion in Nephrology and Hypertension, vol. 12, no. 3, pp. 251–258, 2003.
[7]  L. Barisoni and P. Mundel, “Podocyte biology and the emerging understanding of podocyte diseases,” American Journal of Nephrology, vol. 23, no. 5, pp. 353–360, 2003.
[8]  H. Cheng and R. C. Harris, “The glomerulus—a view from the outside—the podocyte,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 9, pp. 1380–1387, 2010.
[9]  J. R. de Zoysa and P. S. Topham, “Podocyte biology in human disease,” Nephrology, vol. 10, no. 4, pp. 362–367, 2005.
[10]  J. A. Jefferson, C. E. Alpers, and S. J. Shankland, “Podocyte biology for the bedside,” American Journal of Kidney Diseases, vol. 58, no. 5, pp. 835–845, 2011.
[11]  J. Ly, M. Alexander, and S. E. Quaggin, “A podocentric view of nephrology,” Current Opinion in Nephrology and Hypertension, vol. 13, no. 3, pp. 299–305, 2004.
[12]  S. Menzel and M. J. Moeller, “Role of the podocyte in proteinuria,” Pediatric Nephrology, vol. 26, no. 10, pp. 1775–1780, 2011.
[13]  P. Mundel and J. Reiser, “Proteinuria: an enzymatic disease of the podocyte,” Kidney International, vol. 77, no. 7, pp. 571–580, 2010.
[14]  P. Mundel and S. J. Shankland, “Podocyte biology and response to injury,” Journal of the American Society of Nephrology, vol. 13, no. 12, pp. 3005–3015, 2002.
[15]  J. S. Nielsen and K. M. McNagny, “The role of podocalyxin in health and disease,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1669–1676, 2009.
[16]  J. Patrakka and K. Tryggvason, “Molecular make-up of the glomerular filtration barrier,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 164–169, 2010.
[17]  H. Pavenst?dt, W. Kriz, and M. Kretzler, “Cell biology of the glomerular podocyte,” Physiological Reviews, vol. 83, no. 1, pp. 253–307, 2003.
[18]  S. Breiteneder-Geleff, K. Matsui, A. Soleiman et al., “Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis,” American Journal of Pathology, vol. 151, no. 4, pp. 1141–1152, 1997.
[19]  T. W. Huang and J. C. Langlois, “Podoendin. A new cell surface protein of the podocyte and endothelium,” Journal of Experimental Medicine, vol. 162, no. 1, pp. 245–267, 1985.
[20]  E. Schnabel, G. Dekan, A. Miettinen, and M. G. Farquhar, “Biogenesis of podocalyxin—the major glomerular sialoglycoprotein—in the newborn rat kidney,” European Journal of Cell Biology, vol. 48, no. 2, pp. 313–326, 1989.
[21]  B. L. Wharram, M. Goyal, P. J. Gillespie et al., “Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate,” The Journal of Clinical Investigation, vol. 106, no. 10, pp. 1281–1290, 2000.
[22]  S. J. Shankland, “The podocyte's response to injury: role in proteinuria and glomerulosclerosis,” Kidney International, vol. 69, no. 12, pp. 2131–2147, 2006.
[23]  T. B. Huber, M. K?ttgen, B. Schilling, G. Walz, and T. Benzing, “Interaction with podocin facilitates nephrin signaling,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 41543–41546, 2001.
[24]  N. Sachs, M. Kreft, M. A. van den Bergh Weerman et al., “Kidney failure in mice lacking the tetraspanin CD151,” Journal of Cell Biology, vol. 175, no. 1, pp. 33–39, 2006.
[25]  N. P. J. Vogtl?nder, H. Dijkman, M. A. H. Bakker, K. P. Campbell, J. van der Vlag, and J. H. M. Berden, “Localization of α-dystroglycan on the podocyte: from top to toe,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 11, pp. 1345–1353, 2005.
[26]  S. J. Shankland, H. Ly, K. Thai, and J. W. Scholey, “Increased glomerular capillary pressure alters glomerular cytokine expression,” Circulation Research, vol. 75, no. 5, pp. 844–853, 1994.
[27]  S. A. Karumanchi and M. D. Lindheimer, “Preeclampsia and the kidney: footprints in the urine,” American Journal of Obstetrics and Gynecology, vol. 196, no. 4, pp. 287–288, 2007.
[28]  S. C. Satchell, S. J. Harper, J. E. Tooke, D. Kerjaschki, M. A. Saleem, and P. W. Mathieson, “Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 544–550, 2002.
[29]  M. Yang, M. Zhang, J. Chen et al., “Angiopoietin-1 inhibits mouse glomerular endothelial cell senescence via Tie2 receptor-modulated ERK1/2 signaling,” American Journal of Nephrology, vol. 31, no. 6, pp. 490–500, 2010.
[30]  D. R. Abrahamson, “Structure and development of the glomerular capillary wall and basement membrane,” American Journal of Physiology—Renal Fluid and Electrolyte Physiology, vol. 253, no. 5, pp. F783–F794, 1987.
[31]  S. Akilesh, T. B. Huber, H. Wu et al., “Podocytes use FcRn to clear IgG from the glomerular basement membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 967–972, 2008.
[32]  C. R. C. van Roeyen, F. Eitner, P. Boor et al., “Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D,” Kidney International, vol. 80, no. 12, pp. 1292–1305, 2011.
[33]  M.-D. Appary, M. D. Kazatchkine, M. Levi-Strauss, N. Hinglais, and J. Bariety, “Expression of CR1 (CD35) mRNA in podocytes from adult and fetal human kidneys,” Kidney International, vol. 38, no. 2, pp. 289–293, 1990.
[34]  E. H. Garin, W. Mu, J. M. Arthur et al., “Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis,” Kidney International, vol. 78, no. 3, pp. 296–302, 2010.
[35]  D. Kerjaschki, “Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases,” Kidney International, vol. 45, no. 2, pp. 300–313, 1994.
[36]  C. Manno, G. F. M. Strippoli, L. Arnesano et al., “Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy,” Kidney International, vol. 66, no. 4, pp. 1570–1577, 2004.
[37]  A. Konvalinka, J. W. Scholey, and E. P. Diamandis, “Searching for new biomarkers of renal diseases through proteomics,” Clinical Chemistry, vol. 58, no. 2, pp. 353–365, 2012.
[38]  G. H. Tesch, “Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective,” Nephrology, vol. 15, no. 6, pp. 609–616, 2010.
[39]  J. L. Gorriz and A. Martinez-Castelao, “Proteinuria: detection and role in native renal disease progression,” Transplantation Reviews, vol. 26, no. 1, pp. 3–13, 2012.
[40]  J. Barratt and P. Topham, “Urine proteomics: the present and future of measuring urinary protein components in disease,” Canadian Medical Association Journal, vol. 177, no. 4, pp. 361–368, 2007.
[41]  M. Cirillo, “Evaluation of glomerular filtration rate and of albuminuria/proteinuria,” Journal of Nephrology, vol. 23, no. 2, pp. 125–132, 2010.
[42]  J.-Y. Guh, “Proteinuria versus albuminuria in chronic kidney disease,” Nephrology, vol. 15, no. 2, pp. 53–56, 2010.
[43]  T. Wada, M. Shimizu, T. Toyama, A. Hara, S. Kaneko, and K. Furuichi, “Clinical impact of albuminuria in diabetic nephropathy,” Clinical and Experimental Nephrology, vol. 16, no. 1, pp. 96–101, 2012.
[44]  D. Yu, A. Petermann, U. Kunter, S. Rong, S. J. Shankland, and J. Floege, “Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria,” Journal of the American Society of Nephrology, vol. 16, no. 6, pp. 1733–1741, 2005.
[45]  T. Sakairi, Y. Abe, H. Kajiyama et al., “Conditionally immortalized human podocyte cell lines established from urine,” American Journal of Physiology—Renal Physiology, vol. 298, no. 3, pp. F557–F567, 2010.
[46]  A. T. Petermann, R. Krofft, M. Blonski et al., “Podocytes that detach in experimental membranous nephropathy are viable,” Kidney International, vol. 64, no. 4, pp. 1222–1231, 2003.
[47]  R. Doyonnas, J. S. Nielsen, S. Chelliah et al., “Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells,” Blood, vol. 105, no. 11, pp. 4170–4178, 2005.
[48]  C. Sassetti, K. Tangemann, M. S. Singer, D. B. Kershaw, and S. D. Rosen, “Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34,” Journal of Experimental Medicine, vol. 187, no. 12, pp. 1965–1975, 1998.
[49]  N. Vitureira, K. McNagny, E. Soriano, and F. Burgaya, “Pattern of expression of the podocalyxin gene in the mouse brain during development,” Gene Expression Patterns, vol. 5, no. 3, pp. 349–354, 2005.
[50]  D. Kerjaschki, D. J. Sharkey, and M. G. Farquhar, “Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell,” Journal of Cell Biology, vol. 98, no. 4, pp. 1591–1596, 1984.
[51]  Y. Li, J. Li, S. W. Straight, and D. B. Kershaw, “PDZ domain-mediated interaction of rabbit podocalyxin and Na+/H+ exchange regulatory factor-2,” American Journal of Physiology—Renal Physiology, vol. 282, no. 6, pp. F1129–F1139, 2002.
[52]  S. Schmieder, M. Nagai, R. A. Orlando, T. Takeda, and M. G. Farquhar, “Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells,” Journal of the American Society of Nephrology, vol. 15, no. 9, pp. 2289–2298, 2004.
[53]  R. A. Orlando, T. Takeda, B. Zak et al., “The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin,” Journal of the American Society of Nephrology, vol. 12, no. 8, pp. 1589–1598, 2001.
[54]  R. Doyonnas, D. B. Kershaw, C. Duhme et al., “Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin,” Journal of Experimental Medicine, vol. 194, no. 1, pp. 13–27, 2001.
[55]  M. Hara, T. Yamamoto, T. Yanagihara et al., “Urinary excretion of podocalyxin indicates glomerular epithelial cell injuries in glomerulonephritis,” Nephron, vol. 69, no. 4, pp. 397–403, 1995.
[56]  M. Hara, T. Yanagihara, and I. Kihara, “Cumulative excretion of urinary podocytes reflects disease progression in IgA nephropathy and Sch?nlein-Henoch purpura nephritis,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 2, pp. 231–238, 2007.
[57]  M. Hara, T. Yanagihara, M. Itoh, M. Matsuno, and I. Kihara, “Immunohistochemical and urinary markers of podocyte injury,” Pediatric Nephrology, vol. 12, no. 1, pp. 43–48, 1998.
[58]  T. Nakamura, C. Ushiyama, S. Suzuki et al., “Urinary excretion of podocytes in patients with diabetic nephropathy,” Nephrology Dialysis Transplantation, vol. 15, no. 9, pp. 1379–1383, 2000.
[59]  M.-S. Zou, J. Yu, J.-H. Zhou et al., “1,25-dihydroxyvitamin D3 ameliorates podocytopenia in rats with adriamycin-induced nephropathy,” Internal Medicine, vol. 49, no. 24, pp. 2677–2686, 2010.
[60]  R. Asao, K. Asanuma, F. Kodama et al., “Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 7, no. 9, pp. 1385–1393, 2012.
[61]  S. Okubo, “A study of urinary podocalyxin in children with IgA nephropathy,” Japanese Journal of Nephrology, vol. 37, no. 7, pp. 357–365, 1995.
[62]  J. Mueller-Deile, P. Kümpers, J. Achenbach et al., “Podocalyxin-positive glomerular epithelial cells in urine correlate with a positive outcome in FSGS,” Journal of Nephrology, vol. 25, pp. 802–809, 2012.
[63]  K. Aita, M. Etoh, H. Hamada et al., “Acute and transient podocyte loss and proteinuria in preeclampsia,” Nephron—Clinical Practice, vol. 112, no. 2, pp. c65–c70, 2009.
[64]  V. D. Garovic, S. J. Wagner, S. T. Turner et al., “Urinary podocyte excretion as a marker for preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 196, no. 4, pp. 320.e1–320.e7, 2007.
[65]  Y. Wang, S. Zhao, S. Loyd, and L. J. Groome, “Increased urinary excretion of nephrin, podocalyxin, and βig-h3 in women with preeclampsia,” American Journal of Physiology—Renal Physiology, vol. 302, no. 9, pp. F1084–F1089, 2012.
[66]  K. Matsui, A. Kamijo-Ikemori, M. Hara et al., “Clinical significance of tubular and podocyte biomarkers in acute kidney injury,” Clinical and Experimental Nephrology, vol. 15, no. 2, pp. 220–225, 2011.
[67]  M. Hara, K. Yamagata, Y. Tomino et al., “Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes establishment of a highly sensitive ELISA to detect urinary podocalyxin,” Diabetologia, vol. 55, no. 11, pp. 2913–2919, 2012.
[68]  P. Habara, H. Mare?ková, K. Mali?ková et al., “Novel flow cytometric method for the detection of podocalyxin-positive elements in urine of patients with glomerulonephritides—first promising results,” Folia Biologica, vol. 58, pp. 57–63, 2012.
[69]  M. Zheng, L.-L. Lv, J. Ni et al., “Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy,” PLoS ONE, vol. 6, no. 5, Article ID e20431, 2011.
[70]  H. Putaala, R. Soininen, P. Kilpel?inen, J. Wartiovaara, and K. Tryggvason, “The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death,” Human Molecular Genetics, vol. 10, no. 1, pp. 1–8, 2001.
[71]  C. Li, V. Ruotsalainen, K. Tryggvason, A. S. Shaw, and J. H. Miner, “CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere,” American Journal of Physiology—Renal Physiology, vol. 279, no. 4, pp. F785–F792, 2000.
[72]  M. Kestil?, U. Lenkkeri, M. M?nnikk? et al., “Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome,” Molecular Cell, vol. 1, no. 4, pp. 575–582, 1998.
[73]  H. Autio-Harmainen and J. Rapola, “The thickness of the glomerular basement membrane in congenital nephrotic syndrome of the Finnish type,” Nephron, vol. 34, no. 1, pp. 48–50, 1983.
[74]  M. A. Saleem, L. Ni, I. Witherden et al., “Co-localization of nephrin, podocin, and the actin cytoskeleton: evidence for a role in podocyte foot process formation,” American Journal of Pathology, vol. 161, no. 4, pp. 1459–1466, 2002.
[75]  K. Schwarz, M. Simons, J. Reiser et al., “Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin,” The Journal of Clinical Investigation, vol. 108, no. 11, pp. 1621–1629, 2001.
[76]  S. Lehtonen, E. Lehtonen, K. Kudlicka, H. Holth?fer, and M. G. Farquhar, “Nephrin forms a complex with adherens junction proteins and CASK in podocytes and in Madin-Darby canine kidney cells expressing nephrin,” American Journal of Pathology, vol. 165, no. 3, pp. 923–936, 2004.
[77]  A. P?t?ri, C. Forsblom, M. Havana, H. Taipale, P.-H. Groop, and H. Holth?fer, “Nephrinuria in diabetic nephropathy of type 1 diabetes,” Diabetes, vol. 52, no. 12, pp. 2969–2974, 2003.
[78]  D. P. K. Ng, B.-C. Tai, E. Tan et al., “Nephrinuria associates with multiple renal traits in type 2 diabetes,” Nephrology Dialysis Transplantation, vol. 26, no. 8, pp. 2508–2514, 2011.
[79]  J.-H. Chang, S.-Y. Paik, L. Mao et al., “Diabetic kidney disease in FVB/NJ akita mice: temporal pattern of kidney injury and urinary nephrin excretion,” PLoS ONE, vol. 7, no. 4, Article ID e33942, 2012.
[80]  G. H. Son, J. Y. Kwon, S. Lee et al., “Comparison of serum and urinary nephrin levels between normal pregnancies and severe preeclampsia,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 166, no. 2, pp. 139–144, 2013.
[81]  T. Nakatsue, H. Koike, G. D. Han et al., “Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy,” Kidney International, vol. 67, no. 6, pp. 2239–2253, 2005.
[82]  A. T. Petermann, J. Pippin, R. Krofft et al., “Viable podocytes detach in experimental diabetic nephropathy: potential mechanism underlying glomerulosclerosis,” Nephron—Experimental Nephrology, vol. 98, no. 4, pp. e114–e123, 2004.
[83]  P. Aaltonen, P. Luimula, E. ?str?m et al., “Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy,” Laboratory Investigation, vol. 81, no. 9, pp. 1185–1190, 2001.
[84]  T. A. Facca, G. M. Kirsztajn, A. R. Pereira et al., “Renal evaluation in women with preeclampsia,” Nephron Extra, vol. 2, no. 1, pp. 125–132, 2012.
[85]  Y. Sato, B. L. Wharram, S. K. Lee et al., “Urine podocyte mRNAs mark progression of renal disease,” Journal of the American Society of Nephrology, vol. 20, no. 5, pp. 1041–1052, 2009.
[86]  A. Fukuda, L. T. Wickman, M. P. Venkatareddy et al., “Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker,” Nephrology Dialysis Transplantation, vol. 27, no. 11, pp. 4079–4087, 2012.
[87]  G. Wang, F. M.-M. Lai, K.-B. Lai, K.-M. Chow, K.-T. P. Li, and C.-C. Szeto, “Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy,” Nephron—Clinical Practice, vol. 106, no. 4, pp. c169–c179, 2007.
[88]  G. Wang, F. M.-M. Lai, L.-S. Tam et al., “Messenger RNA expression of podocyte-associated molecules in urinary sediment of patients with lupus nephritis,” Journal of Rheumatology, vol. 34, no. 12, pp. 2358–2364, 2007.
[89]  C.-C. Szeto, K.-B. Lai, K.-M. Chow et al., “Messenger RNA expression of glomerular podocyte markers in the urinary sediment of acquired proteinuric diseases,” Clinica Chimica Acta, vol. 361, no. 1-2, pp. 182–190, 2005.
[90]  M. Navarro-Mu?oz, M. Ibernon, V. Pérez et al., “Messenger RNA expression of B7-1 and NPHS1 in urinary sediment could be useful to differentiate between minimal-change disease and focal segmental glomerulosclerosis in adult patients,” Nephrology Dialysis Transplantation, vol. 26, no. 12, pp. 3914–3923, 2011.
[91]  T. P. Kelder, M. E. Penning, H. W. Uh et al., “Quantitative polymerase chain reaction-based analysis of podocyturia is a feasible diagnostic tool in preeclampsia,” Hypertension, vol. 60, pp. 1538–1544, 2012.
[92]  N. Boute, O. Gribouval, S. Roselli et al., “NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome,” Nature Genetics, vol. 24, no. 4, pp. 349–354, 2000.
[93]  S. Roselli, O. Gribouval, N. Boute et al., “Podocin localizes in the kidney to the slit diaphragm area,” American Journal of Pathology, vol. 160, no. 1, pp. 131–139, 2002.
[94]  V. D. Garovic, I. M. Craici, S. J. Wagner et al., “Mass spectrometry as a novel method for detection of podocyturia in pre-eclampsia,” Nephrology, Dialysis, Transplantation, vol. 28, no. 6, pp. 1555–1561, 2013.
[95]  O. Ichii, A. Yabuki, N. Sasaki et al., “Pathological correlations between podocyte injuries and renal functions in canine and feline chronic kidney diseases,” Histology and Histopathology, vol. 26, no. 10, pp. 1243–1255, 2011.
[96]  D. J. V. Bridgewater, A. Mok, and D. G. Matsell, “Expression of complement regulatory proteins in the developing human kidney,” Pediatric Nephrology, vol. 15, no. 1-2, pp. 36–42, 2000.
[97]  M. D. Kazatchkine, D. T. Fearon, M. D. Appay, C. Mandet, and J. Bariety, “Immunohistochemical study of the human glomerular C3b receptor in normal kidney and in seventy-five cases of renal diseases. Loss of C3b receptor antigen in focal hyalinosis and in proliferative nephritis of systemic lupus erythematosus,” The Journal of Clinical Investigation, vol. 69, no. 4, pp. 900–912, 1982.
[98]  E. Fung, L. Esposito, J. A. Todd, and L. S. Wicker, “Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry,” Nature Protocols, vol. 5, no. 2, pp. 357–370, 2010.
[99]  N. Hinglais, M. D. Kazatchkine, C. Mandet, M.-D. Appay, and J. Bariety, “Human liver Kupffer cells express CR1, CR3, and CR4 complement receptor antigens. An immunohistochemistry study,” Laboratory Investigation, vol. 61, no. 5, pp. 509–514, 1989.
[100]  E. Fischer, M. D. Appay, J. Cook, and M. D. Kazatchkine, “Characterization of the human glomerular C3 receptor as the C3b/C4b complement type one (CR1) receptor,” Journal of Immunology, vol. 136, no. 4, pp. 1373–1377, 1986.
[101]  T. S. Puri and R. J. Quigg, “The many effects of complement C3- and C5-binding proteins in renal injury,” Seminars in Nephrology, vol. 27, no. 3, pp. 321–337, 2007.
[102]  M. Pascual, G. Steiger, S. Sadallah et al., “Identification of membrane-bound CR1 (CD35) in human urine: evidence for its release by glomerular podocytes,” Journal of Experimental Medicine, vol. 179, no. 3, pp. 889–899, 1994.
[103]  M. Hara, T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita, “Apical cell membranes are shed into urine from injured podocytes: a novel phenomenon of podocyte injury,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 408–416, 2005.
[104]  E. H. Garin, L. N. Diaz, W. Mu et al., “Urinary CD80 excretion increases in idiopathic minimal-change disease,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 260–266, 2009.
[105]  J. Reiser, G. von Gersdorff, M. Loos et al., “Induction of B7-1 in podocytes is associated with nephrotic syndrome,” The Journal of Clinical Investigation, vol. 113, no. 10, pp. 1390–1397, 2004.
[106]  N. Eto, T. Wada, R. Inagi et al., “Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression,” Kidney International, vol. 72, no. 4, pp. 455–463, 2007.
[107]  C. Faul, M. Donnelly, S. Merscher-Gomez et al., “The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A,” Nature Medicine, vol. 14, no. 9, pp. 931–938, 2008.
[108]  P. Mundel, H. W. Heid, T. M. Mundel, M. Krüger, J. Reiser, and W. Kriz, “Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes,” Journal of Cell Biology, vol. 139, no. 1, pp. 193–204, 1997.
[109]  A. Vlachos, E. Korkotian, E. Schonfeld, E. Copanaki, T. Deller, and M. Segal, “Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons,” Journal of Neuroscience, vol. 29, no. 4, pp. 1017–1033, 2009.
[110]  P. Mundel, P. Gilbert, and W. Kriz, “Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein,” Journal of Histochemistry and Cytochemistry, vol. 39, no. 8, pp. 1047–1056, 1991.
[111]  C. A. Batchelder, C. C. I. Lee, M. L. Martinez, and A. F. Tarantal, “Ontogeny of the kidney and renal developmental markers in the rhesus monkey (Macaca mulatta),” Anatomical Record, vol. 293, no. 11, pp. 1971–1983, 2010.
[112]  S. Yaddanapudi, M. M. Altintas, A. D. Kistler et al., “CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival,” The Journal of Clinical Investigation, vol. 121, no. 10, pp. 3965–3980, 2011.
[113]  G. Wang, F. M.-M. Lai, K.-B. Lai et al., “Intra-renal and urinary mRNA expression of podocyte-associated molecules for the estimation of glomerular podocyte loss,” Renal Failure, vol. 32, no. 3, pp. 372–379, 2010.
[114]  B. Jim, P. Jean-Louis, A. Qipo et al., “Podocyturia as a diagnostic marker for preeclampsia amongst high-risk pregnant patients,” Journal of Pregnancy, vol. 2012, Article ID 984630, 5 pages, 2012.
[115]  C. Pyke, P. Kristensen, P. B. ?stergaard, P. S. Oturai, and J. R?mer, “Proteoglycan expression in the normal rat kidney,” Nephron, vol. 77, no. 4, pp. 461–470, 1997.
[116]  P. E. Thomas, B. L. Wharram, M. Goyal, J. E. Wiggins, L. B. Holzman, and R. C. Wiggins, “GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein- tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit,” Journal of Biological Chemistry, vol. 269, no. 31, pp. 19953–19961, 1994.
[117]  M. Tagawa, T. Shirasawa, Y.-I. Yahagi et al., “Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system,” Biochemical Journal, vol. 321, no. 3, pp. 865–871, 1997.
[118]  L. Barisoni, W. Kriz, P. Mundel, and V. D'Agati, “The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy,” Journal of the American Society of Nephrology, vol. 10, no. 1, pp. 51–61, 1999.
[119]  F. Ozaltin, T. Ibsirlioglu, E. Z. Taskiran et al., “Disruption of PTPRO causes childhood-onset nephrotic syndrome,” American Journal of Human Genetics, vol. 89, no. 1, pp. 139–147, 2011.
[120]  Y. H. Kim, M. Goyal, D. Kurnit et al., “Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat,” Kidney International, vol. 60, no. 3, pp. 957–968, 2001.
[121]  S.-I. Higashijima, A. Nose, G. Eguchi, Y. Hotta, and H. Okamoto, “Mindin/F-spondin family: novel ECM proteins expressed in the zebrafish embryonic axis,” Developmental Biology, vol. 192, no. 2, pp. 211–227, 1997.
[122]  Y. Feinstein, V. Borrell, C. Garcia et al., “F-spondin and mindin: two structurally and functionally related genes expressed in the hippocampus that promote outgrowth of embryonic hippocampal neurons,” Development, vol. 126, no. 16, pp. 3637–3648, 1999.
[123]  M. Murakoshi, M. Tanimoto, T. Gohda et al., “Mindin: a novel marker for podocyte injury in diabetic nephropathy,” Nephrology Dialysis Transplantation, vol. 26, no. 7, pp. 2153–2160, 2011.
[124]  Y.-W. He, H. Li, J. Zhang et al., “The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens,” Nature Immunology, vol. 5, no. 1, pp. 88–97, 2004.
[125]  W. Jia, H. Li, and Y.-W. He, “The extracellular matrix protein mindin serves as an integrin ligand and is critical for inflammatory cell recruitment,” Blood, vol. 106, no. 12, pp. 3854–3859, 2005.
[126]  J. A. Kreidberg, M. J. Donovan, S. L. Goldstein et al., “Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis,” Development, vol. 122, no. 11, pp. 3537–3547, 1996.
[127]  C. Has, G. Spartà, D. Kiritsi et al., “Integrin α3 mutations with kidney, lung, and skin disease,” The New England Journal of Medicine, vol. 366, no. 16, pp. 1508–1514, 2012.
[128]  Y. Sugita and Y. Masuho, “CD59: its role in complement regulation and potential for therapeutic use,” Immunotechnology, vol. 1, no. 3-4, pp. 157–168, 1995.
[129]  I. A. Rooney, A. Davies, D. Griffiths, et al., “The complement-inhibiting protein, protectin (CD59 antigen), is present and functionally active on glomerular epithelial cells,” Clinical and Experimental Immunology, vol. 83, no. 2, pp. 251–256, 1991.
[130]  P. N. Cunningham, B. K. Hack, G. Ren, A. W. M. Minto, B. P. Morgan, and R. J. Quigg, “Glomerular complement regulation is overwhelmed in passive Heymann nephritis,” Kidney International, vol. 60, no. 3, pp. 900–909, 2001.
[131]  T. Lehto, E. Honkanen, A.-M. Teppo, and S. Meri, “Urinary excretion of protectin (CD59), complement SC5b-9 and cytokines in membranous glomerulonephritis,” Kidney International, vol. 47, no. 5, pp. 1403–1411, 1995.
[132]  J.-K. Guo, A. L. Menke, M.-C. Gubler et al., “WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis,” Human Molecular Genetics, vol. 11, no. 6, pp. 651–659, 2002.
[133]  R. E. Palmer, A. Kotsianti, B. Cadman, T. Boyd, W. Gerald, and D. A. Haber, “WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin,” Current Biology, vol. 11, no. 22, pp. 1805–1809, 2001.
[134]  K. Schwab, D. P. Witte, B. J. Aronow, P. Devarajan, S. S. Potter, and L. T. Patterson, “Microarray analysis of focal segmental glomerulosclerosis,” American Journal of Nephrology, vol. 24, no. 4, pp. 438–447, 2004.
[135]  T. Ohse, M. R. Vaughan, J. B. Kopp et al., “De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease,” American Journal of Physiology—Renal Physiology, vol. 298, no. 3, pp. F702–F711, 2010.
[136]  T. Pisitkun, R.-F. Shen, and M. A. Knepper, “Identification and proteomic profiling of exosomes in human urine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13368–13373, 2004.
[137]  H. Zhou, P. S. T. Yuen, T. Pisitkun et al., “Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery,” Kidney International, vol. 69, no. 8, pp. 1471–1476, 2006.
[138]  H. Zhou, A. Cheruvanky, X. Hu et al., “Urinary exosomal transcription factors, a new class of biomarkers for renal disease,” Kidney International, vol. 74, no. 5, pp. 613–621, 2008.
[139]  M. Hara, T. Yanagihara, Y. Hirayama et al., “Podocyte membrane vesicles in urine originate from tip vesiculation of podocyte microvilli,” Human Pathology, vol. 41, no. 9, pp. 1265–1275, 2010.
[140]  S. M. Hewitt, J. Dear, and R. A. Star, “Discovery of protein biomarkers for renal diseases,” Journal of the American Society of Nephrology, vol. 15, no. 7, pp. 1677–1689, 2004.
[141]  J. Malyszko, “Biomarkers of acute kidney injury in different clinical settings: a time to change the paradigm?” Kidney and Blood Pressure Research, vol. 33, no. 5, pp. 368–382, 2010.
[142]  T. Biederer and T. C. Südhof, “CASK and protein 4.1 support F-actin nucleation on neurexins,” Journal of Biological Chemistry, vol. 276, no. 51, pp. 47869–47876, 2001.
[143]  A. Saito, N. Miyauchi, T. Hashimoto et al., “Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 300, no. 2, pp. R340–R348, 2011.
[144]  G. M. Ghiggeri, G. Caridi, U. Magrini et al., “Genetics, clinical and pathological features of glomerulonephrites associated with mutations of nonmuscle myosin IIA (Fechtner syndrome),” American Journal of Kidney Diseases, vol. 41, no. 1, pp. 95–104, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133