全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Electrohydraulic Discharge on Viscosity of Human Blood

DOI: 10.1155/2013/203708

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electrohydraulic plasma discharge is a novel technology with high efficiency and high speed and can generate chemically active species like free radicals, ions, atoms, and metastables, accompanied by ultraviolet light emission and shock pressure waves. The aim of this work is to examine the effect of electrohydraulic discharge (EHD) system on viscosity of the human blood after different exposure time. The voltage pulsation introduces electric field and temperature jump and at the same time leads to haemolysis of the blood cells. The ratio of blood viscosity under the influence of magnetic field to the viscosity in the absence of magnetic field is directly proportional to the applied magnetic field . 1. Introduction Blood viscosity is one measurement currently obtained invasively via a blood sample and can be defined as the intrinsic resistance to blood flow due to internal friction arising between blood’s molecular and particulate components. The viscosity of any fluid (measured in millipascals·seconds) is a function of its sheer stress (force per unit area applied to a fluid layer producing this layer’s movement relative to an adjacent fluid layer) and its sheer rate (velocity gradient between two adjacent fluid layers), defined in Of the factors influencing blood viscosity, the major contributors include blood plasma, plasma proteins, and both leukocyte and erythrocyte volume (hematocrit), shape, and aggregation [1]. Blood viscosity variations by erythrocytic factors are indicative of various human ailments. The two major components of RBCs resulting in abnormal viscosity measurements are individual RBC deformation and collective RBC aggregation. Compared to other components of whole blood, the RBC component is a strong magnetic material, whose orientation has been shown to be affected by external magnetic fields [2]. The magnetic force felt by erythrocytes depending on their magnetic state has been approximated by [3] where is the permeability of free space, is the difference in magnetic susceptibility between blood cells and buffer solution (in our case, mainly plasma and white blood cells), is the volume of the blood cell, and is the applied magnetic field. Additionally, the orientation of an erythrocyte in an external magnetic field is dependent on the oxygenation state of the RBC’s haemoglobin, the iron-containing oxygen carrying component of RBCs [3, 4]. In its oxygenated state, haemoglobin acts as a diamagnetic particle, and in its deoxygenated state, haemoglobin acts as a paramagnetic particle. These differing erythrocytes magnetic

References

[1]  G. D. O. Lowe, “Blood rheology in vitro and in vivo,” Baillière's Clinical Haematology, vol. 1, no. 3, pp. 597–5636, 1987.
[2]  T. Higashi, A. Yamagishi, T. Takeuchi et al., “Orientation of erythrocytes in a strong static magnetic field,” Blood, vol. 82, no. 4, pp. 1328–1334, 1993.
[3]  K. H. Man and A. Bruno Frazier, “Continuous magnetophoretic separation of blood cells in microdevlce format,” Journal of Applied Physics, vol. 96, no. 10, pp. 5797–5802, 2004.
[4]  T. Yamamoto, Y. Nagayama, and M. Tamura, “A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field,” Physics in Medicine and Biology, vol. 49, no. 14, pp. 3267–3277, 2004.
[5]  M. Okazaki, N. Maeda, and T. Shiga, “Effects of an inhomogeneous magnetic field on flowing erythrocytes,” European Biophysics Journal, vol. 14, no. 3, pp. 139–145, 1987.
[6]  W. K. Ching, A. J. Colussi, H. J. Sun, K. H. Nealson, and M. R. Hoffmann, “Escherichia coli disinfection by electrohydraulic discharges,” Environmental Science and Technology, vol. 35, no. 20, pp. 4139–4144, 2001.
[7]  D. L. Miller, “The influence of hematocrit on hemolysis by ultrasonically activated gas-filled micropores,” Ultrasound in Medicine and Biology, vol. 14, no. 4, pp. 293–297, 1988.
[8]  D. L. Miller and R. M. Thomas, “A comparison of hemolytic and sonochemical activity of ultrasonic cavitation in a rotating tube,” Ultrasound in Medicine and Biology, vol. 19, no. 1, pp. 83–90, 1993.
[9]  H. Y. Lee, H. S. Uhm, H. N. Choi, Y. J. Jung, B. K. Kang, and H. C. Yoo, “Underwater discharge and cell destruction by shockwaves,” Journal of the Korean Physical Society, vol. 42, no. 2, pp. S880–S884, 2003.
[10]  F. B. A. Frugel, High Speed Pulse Technology, chapter 1, Academic Press, London, UK, 1965.
[11]  Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 180–186, 2001.
[12]  E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, UK, 1985.
[13]  E. Blums, A. Cebers, and M. M. Maiorov, Magnetic Fluids, Walter de Gruyter, Berlin, Germany, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133