全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Minireview of the Natures of Radiation-Induced Point Defects in Pure and Doped Silica Glasses and Their Visible/Near-IR Absorption Bands, with Emphasis on Self-Trapped Holes and How They Can Be Controlled

DOI: 10.1155/2013/379041

Full-Text   Cite this paper   Add to My Lib

Abstract:

The natures of most radiation-induced point defects in amorphous silicon dioxide (a-SiO2) are well known on the basis of 56 years of electron spin resonance (ESR) and optical studies of pure and doped silica glass in bulk, thin-film, and fiber-optic forms. Many of the radiation-induced defects intrinsic to pure and B-, Al-, Ge-, and P-doped silicas are at least briefly described here and references are provided to allow the reader to learn still more about these, as well as some of those defects not mentioned. The metastable self-trapped holes (STHs), intrinsic to both doped and undoped silicas, are argued here to be responsible for most transient red/near-IR optical absorption bands induced in low-OH silica-based optical fibers by ionizing radiations at ambient temperatures. However, accelerated testing of a-SiO2-based optical devices slated for space applications must take into account the highly supralinear dependence on ionizing-dose-rate of the initial STH creation rate, which if not recognized would lead to false negatives. Fortunately, however, it is possible to permanently reduce the numbers of environmentally or operationally created STHs by long-term preirradiation at relatively low dose rates. Finally, emphasis is placed on the importance and utility of rigorously derived fractal-kinetic formalisms that facilitate reliable extrapolation of radiation-induced optical attenuations in silica-based photonics recorded as functions of dose rate backward into time domains unreachable in practical laboratory times and forward into dose-rate regimes for which there are no present-day laboratory sources. 1. Introduction Optical fibers and metal-oxide-semiconductor (MOS) devices based on amorphous forms of SiO2 (a-SiO2) are components of many photonic devices and systems that require hardness against nuclear and/or space radiations. Development of radiation-hardened optical fibers based on glassy silica, as well as MOS devices with amorphous SiO2 gate insulators, is dependent on a fundamental understanding of radiation-induced defect formation in the a-SiO2 component. The multitude of relevant radiation damage processes are schematically illustrated in Figure 1, which is taken from [1] where these processes are discussed in considerable detail. The present paper will limit its focus to the natures of the radiation-induced point defects—also termed “color centers”—that are known to absorb light in the wavelength range ~500 to ~2000?nm in silica-based optical fibers and other photonic devices. A concise review of radiolytic trapped-oxide charges in

References

[1]  D. L. Griscom, “Nature of defects and defect generation in optical glasses,” Proceedings of SPIE, vol. 541, pp. 38–59, 1985.
[2]  D. L. Griscom, “Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: a review of the evidence,” Journal of Electronic Materials, vol. 21, no. 7, pp. 763–767, 1992.
[3]  D. L. Griscom, “Amorphous materials: electron spin resonance,” in Encyclopedia of Materials: Science and Technology, pp. 179–186, Elsevier Science, 2001.
[4]  D. L. Griscom, “Electron spin resonance,” in Glass Science and Technology, vol. 4B of Advances in Structural Analysis, pp. 151–251, Academic Press, New York, NY, USA, 1990.
[5]  E. J. Friebele and D. L. Griscom, “Color centers in glass optical fiber waveguides,” in Defects in Glasses, vol. 61 of MRS Proceedings, pp. 319–331, 1986.
[6]  D. L. Griscom, “On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Optical Materials Express, vol. 1, pp. 400–412, 2011.
[7]  D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” Journal of Non-Crystalline Solids, vol. 357, no. 8-9, pp. 1945–1962, 2011.
[8]  D. L. Griscom and E. J. Friebele, “Fundamental radiation-induced defect centers in synthetic fused silicas: atomic chlorine, delocalized e centers, and a triplet state,” Physical Review B, vol. 34, no. 11, pp. 7524–7533, 1986.
[9]  R. A. Weeks, “Paramagnetic resonance of lattice defects in irradiated quartz,” Journal of Applied Physics, vol. 27, no. 11, pp. 1376–1381, 1956.
[10]  D. L. Griscom, “Characterization of three E′-center variants in X- and γ-irradiated high purity a-SiO2,” Nuclear Instruments and Methods in Physics Research B, vol. 1, no. 2-3, pp. 481–488, 1984.
[11]  D. L. Griscom and M. Cook, “29Si superhyperfine interactions of the E′ center: a potential probe of range-II order in silica glass,” Journal of Non-Crystalline Solids, vol. 182, no. 1-2, pp. 119–134, 1995.
[12]  D. L. Griscom, “The natures of point defects in amorphous silicon dioxide,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, Eds., pp. 117–159, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[13]  G. Buscarino, S. Agnello, and F. M. Gelardi, “Si29 hyperfine structure of the center in amorphous silicon dioxide,” Physical Review Letters, vol. 97, no. 13, Article ID 135502, 2006.
[14]  M. Jivanescu and A. Stesmans, “Multi-frequency ESR analysis of defect in a-SiO2,” in Proceedings of the 8th Symposium SiO2, Advanced Dielectrics and Related Devices, Varenna, Italy, 2010.
[15]  D. L. Griscom, “Electron spin resonance characterization of self-trapped holes in amorphous silicon dioxide,” Journal of Non-Crystalline Solids, vol. 149, no. 1-2, pp. 137–160, 1992.
[16]  D. L. Griscom, “Self-trapped holes in pure-silica glass: a history of their discovery and characterization and an example of their critical significance to industry,” Journal of Non-Crystalline Solids, vol. 352, no. 23-25, pp. 2601–2617, 2006.
[17]  J. A. Weil, “A demi-century of magnetic defects in α quartz,” in Defects in SiO2 and Related Dielectrics: Science and Technology, pp. 197–212, Kluwer Academic, London, UK, 2000.
[18]  E. J. Friebele, D. L. Griscom, and G. H. Sigel, “Defect centers in a germanium-doped silica-core optical fiber,” Journal of Applied Physics, vol. 45, no. 8, pp. 3424–3428, 1974.
[19]  J. Isoya, J. A. Weil, and R. F. C. Claridge, “The dynamic interchange and relationship between germanium centers in α-quartz,” The Journal of Chemical Physics, vol. 69, no. 11, pp. 4876–4884, 1978.
[20]  R. J. McEachern and J. A. Weil, “17O hyperfine interaction for the [GeO4] and [GeO4/Li] centers in an enriched crystal of α-quartz,” Physical Review B, vol. 49, no. 10, pp. 6698–6709, 1994.
[21]  A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Optics Express, vol. 19, no. 12, pp. 11680–11690, 2011.
[22]  K. Nagasawa, T. Fujii, Y. Ohki, and Y. Hama, “Relation between Ge(2) center and 11.9?mT hyperfine structure of ESR spectra in Ge-doped silica fibers,” Japanese Journal of Applied Physics, vol. 27, no. 2, pp. 240–243, 1988.
[23]  A. A. Bobyshev and V. A. Radtsig, “EPR study of the centers of chemisorption of certain gases on a GeO2 surface,” Kinetics and Catalysis, vol. 22, pp. 1229–1235, 1982.
[24]  T. E. Tsai and D. L. Griscom, “On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH,” Journal of Non-Crystalline Solids, vol. 91, no. 2, pp. 170–179, 1987.
[25]  D. L. Griscom, “Thermal bleaching of x-ray-induced defect centers in high purity fused silica by diffusion of radiolytic molecular hydrogen,” Journal of Non-Crystalline Solids, vol. 68, no. 2-3, pp. 301–325, 1984.
[26]  D. L. Griscom, G. H. Sigel, and R. J. Ginther, “Defect centers in a pure-silica-core borosilicate-clad optical fiber: ESR studies,” Journal of Applied Physics, vol. 47, no. 3, pp. 960–967, 1976.
[27]  M. G. Jani, R. B. Bossoli, and L. E. Halliburton, “Further characterization of the E1′ center in crystalline SiO2,” Physical Review B, vol. 27, no. 4, pp. 2285–2293, 1983.
[28]  R. Schnadt and A. R?uber, “Motional effects in the trapped-hole center in smoky quartz,” Solid State Communications, vol. 9, no. 2, pp. 159–161, 1971.
[29]  K. L. Brower, “Electron paramagnetic resonance of Al E1′ centers in vitreous silica,” Physical Review B, vol. 20, no. 5, pp. 1799–1811, 1979.
[30]  A. N. Trukhin, A. Sharakovski, J. Grube, and D. L. Griscom, “Sub-band-gap-excited luminescence of localized states in SiO2-Si and SiO2-Al glasses,” Journal of Non-Crystalline Solids, vol. 356, no. 20-22, pp. 982–986, 2010.
[31]  D. L. Griscom, “γ and fission-reactor radiation effects on the visible-range transparency of aluminum-jacketed, all-silica optical fibers,” Journal of Applied Physics, vol. 80, no. 4, pp. 2142–2155, 1996.
[32]  D. L. Griscom, D. B. Brown, and N. S. Saks, “Nature of radiation-induced point defects in amorphous SiO2 and their role in SiO2-on-Si structures,” in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, pp. 287–297, Plenum, New York, NY, USA, 1988.
[33]  S. Girard, D. L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: influence of self-trapped holes,” Journal of Non-Crystalline Solids, vol. 352, no. 23-25, pp. 2637–2642, 2006.
[34]  J. H. Konnert, P. D'Antonio, and J. Karle, “Comparison of radial distribution function for silica glass with those for various bonding topologies: use of correlation function,” Journal of Non-Crystalline Solids, vol. 53, no. 1-2, pp. 135–141, 1982.
[35]  G. Pacchioni and A. Basile, “Calculated spectral properties of self-trapped holes in pure and Ge-doped SiO2,” Physical Review B, vol. 60, no. 14, pp. 9990–9998, 1999.
[36]  A. V. Kimmel, P. V. Sushko, and A. L. Shluger, “Structure and spectroscopic properties of trapped holes in silica,” Journal of Non-Crystalline Solids, vol. 353, no. 5-7, pp. 599–604, 2007.
[37]  A. C. Wright, “Defect-free vitreous networks: the idealized structure of SiO2 and related glasses,” in Defects in SiO2 and Related Dielectrics: Science and Technology, pp. 1–35, Kluwer Academic Publishers, London, UK, 2000.
[38]  A. C. Wright, “Neutron and x-ray amorphography,” in Experimental Techniques of Glass Science, pp. 205–314, The American Ceramic Society, Westerville, Ohio, USA, 1993.
[39]  D. L. Griscom, “Self-trapped holes in amorphous silicon dioxide,” Physical Review B, vol. 40, no. 6, pp. 4224–4227, 1989.
[40]  P. V. Chernov, E. M. Dianov, and V. N. Karpechev, “Spectroscopic manifestations of self-trapped holes in silica,” Physica Status Solidi B, vol. 155, pp. 633–640, 1989.
[41]  E. Harari, S. Wang, and B. S. H. Royce, “Low-temperature irradiation effects in SiO2-insulated MIS devices,” Journal of Applied Physics, vol. 46, no. 3, pp. 1310–1317, 1975.
[42]  K. Nagasawa, M. Tanabe, K. Yahagi, A. Iino, and T. Kuroha, “Gamma-ray induced absorption band at 760?nm in pure silica core optical fibers,” Japanese Journal of Applied Physics, vol. 23, no. 5, pp. 606–611, 1984.
[43]  K. Nagasawa, M. Tanabe, and K. Yahagi, “Gamma-ray-induced absorption bands in pure-silica-core fibers,” Japanese Journal of Applied Physics, vol. 23, no. 12, pp. 1608–1613, 1984.
[44]  D. L. Griscom, “Visible/infra-red absorption study in fiber geometry of metastable defect states in high-purity fused silicas,” Materials Science Forum, vol. 239–241, pp. 19–24, 1997.
[45]  D. L. Griscom, “Radiation hardening of pure-silica-core optical fibers: reduction of induced absorption bands associated with self-trapped holes,” Applied Physics Letters, vol. 71, no. 2, pp. 175–177, 1997.
[46]  D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?” Journal of Non-Crystalline Solids, vol. 349, no. 1–3, pp. 139–147, 2004.
[47]  Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Physical Review B, vol. 68, no. 1, Article ID 014204, pp. 142041–142047, 2003.
[48]  D. L. Griscom, “Fractal kinetics of radiation-induced point-defect formationand decay in amorphous insulators: application to color centers insilica-based optical fibers,” Physical Review B, vol. 64, no. 17, Article ID 174201, 2001.
[49]  D. L. Griscom, M. Stapelbroek, and E. J. Friebele, “ESR studies of damage processes in X-irradiated high purity a-SiO2:OH and characterization of the formyl radical defect,” The Journal of Chemical Physics, vol. 78, no. 4, pp. 1638–1651, 1983.
[50]  D. L. Griscom, “Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77?K with X-Rays or 6.4-eV laser light,” Nuclear Instruments and Methods in Physics Research B, vol. 46, no. 1–4, pp. 12–17, 1990.
[51]  V. A. Mashkov, W. R. Austin, L. Zhang, and R. G. Leisure, “Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2,” Physical Review Letters, vol. 76, no. 16, pp. 2926–2929, 1996.
[52]  J. Klafter and M. F. Shlesinger, “On the relationship among three theories of relaxation in disordered systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, pp. 848–851, 1986.
[53]  E. J. Friebele, G. M. Williams, and W. D. Mack, “Qualified parts list optical fibers in radiation environments,” in Optical Fiber Reliability and Testing, vol. 3848 of Proceedings of SPIE, pp. 232–239, September 1999.
[54]  E. V. Anoikin, V. M. Mashinsky, V. B. Neustruev, and Y. S. Sidorin, “Effects of exposure to photons of various energies on transmission of germanosilicate optical fiber in the visible to near IR spectral range,” Journal of Non-Crystalline Solids, vol. 179, pp. 243–253, 1994.
[55]  D. L. Griscom, “γ-ray-induced optical attenuation in Ge-doped-silica fiber image guides,” Journal of Applied Physics, vol. 78, no. 11, pp. 6696–6704, 1995.
[56]  L. Skuja, “Section 1. Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” Journal of Non-Crystalline Solids, vol. 239, no. 1–3, pp. 16–48, 1998.
[57]  D. L. Griscom, M. E. Gingerich, and E. J. Friebele, “Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers,” IEEE Transactions on Nuclear Science, vol. 41, no. 3, pp. 523–527, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133