全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Aerobic Training on Cognitive Function and Arterial Stiffness in Sedentary Young Adults: A Pilot Randomized Controlled Trial

DOI: 10.1155/2013/847325

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study measured cognitive and vascular responses to aerobic training in sedentary young adults. Ten adults (6 women, 4 men; 18–29 years) were randomly assigned to an experimental or no-treatment control group. The experimental group engaged in a 6-week intervention, performed on exercise cycle and treadmill, 3x/week, 50?min/session; intensity was increased over time. Outcome measures included arterial stiffness (augmentation index, AIx, and pulse pressure), cardiorespiratory fitness ( ), and cognitive function (attention, processing speed, working memory, episodic memory, and executive function). Participants randomized to aerobic training improved processing speed versus control ( , ES?=?0.55). However, no group × time effects were noted in other domains of cognitive function. AIx was reduced by approximately 16% from before to after intervention in the experimental group; however, the improvement was not statistically significant versus control ( , ES?=?0.22). Pulse pressure did not change between groups over time ( , ES?=?0.0). increased by approximately 10% in the experimental group; however, the change was not significant between groups over time ( , ES?=?0.27). Vascular and cognitive adaptations to aerobic training may move in parallel. Robust trials simultaneously investigating a broad spectrum of aerobic training interventions and vascular and cognitive outcomes are warranted. 1. Introduction Aging is associated with neurocognitive decline, which can lead to mild cognitive impairment (MCI) and dementia such as Alzheimer’s disease [1]. Epidemiological data have shown that higher levels of physical activity [2–4] and fitness [5–8] are associated with better cognitive function and protect against cognitive decline [9]. Moreover, a recent meta-analysis of 29 randomized controlled trials involving healthy and chronically diseased adults of all ages, including individuals with MCI, concluded that aerobic training for more than one month can significantly improve measures of cognitive function, including attention, processing speed, memory, and executive function (i.e., cognitive flexibility) [10]. Such findings have led to a general consensus that exercise can enhance and/or maintain cognitive vitality throughout the lifespan [11]. Accordingly, exercise interventions to prevent cognitive decline should be initiated or maintained in early adulthood when participation in strenuous physical activities is often markedly reduced [12]. Measures of arterial stiffness (e.g., augmentation index, pulse pressure) increase as a consequence of aging and

References

[1]  J. E. Graham, K. Rockwood, B. L. Beattie et al., “Prevalence and severity of cognitive impairment with and without dementia in an elderly population,” The Lancet, vol. 349, no. 9068, pp. 1793–1796, 1997.
[2]  S. Rovio, I. K?reholt, E.-L. Helkala et al., “Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease,” Lancet Neurology, vol. 4, no. 11, pp. 705–711, 2005.
[3]  L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004.
[4]  R. D. Abbott, L. R. White, G. W. Ross, K. H. Masaki, J. D. Curb, and H. Petrovitch, “Walking and dementia in physically capable elderly men,” Journal of the American Medical Association, vol. 292, no. 12, pp. 1447–1453, 2004.
[5]  R. Newson and E. B. Kemps, “Cardiorespiratory fitness as a predictor of successful cognitive ageing,” Journal of Clinical and Experimental Neuropsychology, vol. 28, no. 6, pp. 949–967, 2006.
[6]  J. M. Bugg, K. Shah, D. T. Villareal, and D. Head, “Cognitive and neural correlates of aerobic fitness in obese older adults,” Experimental Aging Research, vol. 38, no. 2, pp. 131–145, 2012.
[7]  S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003.
[8]  M. A. I. ?berg, N. L. Pedersen, K. Torén et al., “Cardiovascular fitness is associated with cognition in young adulthood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20906–20911, 2009.
[9]  D. E. Barnes, K. Yaffe, W. A. Satariano, and I. B. Tager, “A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults,” Journal of the American Geriatrics Society, vol. 51, no. 4, pp. 459–465, 2003.
[10]  P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010.
[11]  A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006.
[12]  P. Gordon-Larsen, M. C. Nelson, and B. M. Popkin, “Longitudinal physical activity and sedentary behavior trends: adolescence to adulthood,” American Journal of Preventive Medicine, vol. 27, no. 4, pp. 277–283, 2004.
[13]  G. F. Mitchell, M. A. van Buchem, S. Sigurdsson, et al., “Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility—Reykjavik study,” Brain, vol. 134, part 11, pp. 3398–3407, 2011.
[14]  C. M. Chung, Y. S. Lin, C. M. Chu, et al., “Arterial stiffness is the independent factor of left ventricular hypertrophy determined by electrocardiogram,” The American Journal of the Medical Sciences, vol. 344, no. 3, pp. 190–193, 2012.
[15]  O. Hanon, S. Haulon, H. Lenoir et al., “Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss,” Stroke, vol. 36, no. 10, pp. 2193–2197, 2005.
[16]  M. P. Pase, A. Pipingas, M. Kras et al., “Healthy middle-aged individuals are vulnerable to cognitive deficits as a result of increased arterial stiffness,” Journal of Hypertension, vol. 28, no. 8, pp. 1724–1729, 2010.
[17]  N. M. van Popele, D. E. Grobbee, M. L. Bots et al., “Association between arterial stiffness and atherosclerosis: the Rotterdam study,” Stroke, vol. 32, no. 2, pp. 454–460, 2001.
[18]  L. Zheng, W. J. Mack, H. C. Chui, et al., “Coronary artery disease is associated with cognitive decline independent of changes on magnetic resonance imaging in cognitively normal elderly adults,” Journal of the American Geriatrics Society, vol. 60, no. 3, pp. 499–504, 2012.
[19]  D. Bos, M. W. Vernooij, S. E. Elias-Smale, et al., “Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging,” Alzheimers Dement, vol. 8, no. 5, supplement, pp. 104–111, 2012.
[20]  M. F. O'Rourke and M. E. Safar, “Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy,” Hypertension, vol. 46, no. 1, pp. 200–204, 2005.
[21]  M. P. Pase, A. Herbert, N. A. Grima, A. Pipingas, and M. F. O'Rourke, “Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis,” Internal Medicine Journal, vol. 42, no. 7, pp. 808–815, 2012.
[22]  S. W. Rabkin and G. Jarvie, “Comparison of vascular stiffness in vascular dementia, Alzheimer dementia and cognitive impairment,” Blood Press, vol. 20, no. 5, pp. 274–283, 2011.
[23]  H. Triantafyllidi, C. Arvaniti, J. Lekakis et al., “Cognitive impairment is related to increased arterial stiffness and microvascular damage in patients with never-treated essential hypertension,” American Journal of Hypertension, vol. 22, no. 5, pp. 525–530, 2009.
[24]  M. J. Goldberg, S. H. Boutcher, and Y. N. Boutcher, “The effect of 4 weeks of aerobic exercise on vascular and baroreflex function of young men with a family history of hypertension,” Journal of Human Hypertension, vol. 26, no. 11, pp. 644–649, 2012.
[25]  A. G. Huebschmann, W. M. Kohrt, and J. G. Regensteiner, “Exercise attenuates the premature cardiovascular aging effects of type 2 diabetes mellitus,” Vascular Medicine, vol. 16, no. 5, pp. 378–390, 2011.
[26]  K. M. Madden, C. Lockhart, D. Cuff, T. F. Potter, and G. S. Meneilly, “Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia,” Diabetes Care, vol. 32, no. 8, pp. 1531–1535, 2009.
[27]  S. Mustata, C. Chan, V. Lai, and J. A. Miller, “Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients,” Journal of the American Society of Nephrology, vol. 15, no. 10, pp. 2713–2718, 2004.
[28]  W. Thompson, N. Gordon, and L. Pescatello, Eds., ACSM'S Guidelines for Exercise Testing and Prescription, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2010.
[29]  R. C. Gur, J. Richard, P. Hughett et al., “A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation,” Journal of Neuroscience Methods, vol. 187, no. 2, pp. 254–262, 2010.
[30]  M. J. Kane, A. R. A. Conway, T. K. Miura, and G. J. H. Colflesh, “Working memory, attention control, and the n-back task: a question of construct validity,” Journal of Experimental Psychology, vol. 33, no. 3, pp. 615–622, 2007.
[31]  K. W. Greve, F. Ingram, and K. J. Bianchini, “Latent structure of the Wisconsin Card Sorting Test in a clinical sample,” Archives of Clinical Neuropsychology, vol. 13, no. 7, pp. 597–609, 1998.
[32]  E. A. Berg, “A simple objective technique for measuring flexibility in thinking,” The Journal of General Psychology, no. 39, p. 15, 1948.
[33]  J. E. Sharman, J. E. Davies, C. Jenkins, and T. H. Marwick, “Augmentation index, left ventricular contractility, and wave reflection,” Hypertension, vol. 54, no. 5, pp. 1099–1105, 2009.
[34]  I. B. Wilkinson, S. A. Fuchs, I. M. Jansen et al., “Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis,” Journal of Hypertension, vol. 16, no. 12, part 2, pp. 2079–2084, 1998.
[35]  D. G. Edwards and J. T. Lang, “Augmentation index and systolic load are lower in competitive endurance athletes,” American Journal of Hypertension, vol. 18, no. 5, pp. 679–683, 2005.
[36]  “Reference values for SphygmoCor Px,” http://www.atcormedical.com/pdf/TN8%20-%20Reference%20Values%20for%20SphygmoCor%20Px.pdf.
[37]  R. A. Robergs and R. Landwehr, “The surprising history of the “HRmax?=?220?age” equation,” Journal of Exercise Physiology Online, vol. 5, no. 2, pp. 1–10, 2002.
[38]  V. Heywood, Advanced Fitness Assessment and Exercise Prescription, Human Kinetics, Champaign, Ill, USA, 5th edition, 2006.
[39]  S. Stroth, K. Hille, M. Spitzer, and R. Reinhardt, “Aerobic endurance exercise benefits memory and affect in young adults,” Neuropsychological Rehabilitation, vol. 19, no. 2, pp. 223–243, 2009.
[40]  S. Stroth, R. K. Reinhardt, J. Th?ne et al., “Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults,” Neurobiology of Learning and Memory, vol. 94, no. 3, pp. 364–372, 2010.
[41]  A. L. Hansen, B. H. Johnsen, J. J. Sollers, K. Stenvik, and J. F. Thayer, “Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining,” European Journal of Applied Physiology, vol. 93, no. 3, pp. 263–272, 2004.
[42]  P. Heyn, B. C. Abreu, and K. J. Ottenbacher, “The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1694–1704, 2004.
[43]  P. C. Heyn, K. E. Johnson, and A. F. Kramer, “Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis,” Journal of Nutrition, Health and Aging, vol. 12, no. 6, pp. 401–409, 2008.
[44]  T. A. Salthouse, “When does age-related cognitive decline begin?” Neurobiology of Aging, vol. 30, no. 4, pp. 507–514, 2009.
[45]  R. E. Rikli and D. J. Edwards, “Effects of a three-year exercise program on motor function and cognitive processing speed in older women,” Research Quarterly for Exercise and Sport, vol. 62, no. 1, pp. 61–67, 1991.
[46]  P. A. Vernon, “Speed of information processing and general intelligence,” Intelligence, vol. 7, no. 1, pp. 53–70, 1983.
[47]  S. J. Cohn, J. S. Carlson, and A. R. Jensen, “Speed of information processing in academically gifted youths,” Personality and Individual Differences, vol. 6, no. 5, pp. 621–629, 1985.
[48]  P. A. Vernon and A. R. Jensen, “Individual and group differences in intelligence and speed of information processing,” Personality and Individual Differences, vol. 5, no. 4, pp. 411–423, 1984.
[49]  K. D. Currie, S. G. Thomas, and J. M. Goodman, “Effects of short-term endurance exercise training on vascular function in young males,” European Journal of Applied Physiology, vol. 107, no. 2, pp. 211–218, 2009.
[50]  J. D. Cameron and A. M. Dart, “Exercise training increases total systemic arterial compliance in humans,” American The Journal of Physiology, vol. 266, no. 2, pp. H693–H701, 1994.
[51]  T. Kakiyama, M. Matsuda, and S. Koseki, “Effect of physical activity on the distensibility of the aortic wall in healthy males,” Angiology, vol. 49, no. 10, pp. 749–757, 1998.
[52]  E. M. Tuzcu, S. R. Kapadia, E. Tutar et al., “High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults evidence from intravascular ultrasound,” Circulation, vol. 103, no. 22, pp. 2705–2710, 2001.
[53]  L. T. Mahoney, T. L. Burns, W. Stanford et al., “Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine study,” Journal of the American College of Cardiology, vol. 27, no. 2, pp. 277–284, 1996.
[54]  I. Ferreira, J. W. R. Twisk, C. D. A. Stehouwer, W. van Mechelen, and H. C. G. Kemper, “Longitudinal changes in VO2max: associations with carotid IMT and arterial stiffness,” Medicine and Science in Sports & Exercise, vol. 35, no. 10, pp. 1670–1678, 2003.
[55]  D. J. Green, A. Maiorana, G. O'Driscoll, and R. Taylor, “Effect of exercise training on endothelium-derived nitric oxide function in humans,” The Journal of Physiology, vol. 561, no. 1, pp. 1–25, 2004.
[56]  A. S. Kelly, R. J. Wetzsteon, D. R. Kaiser, J. Steinberger, A. J. Bank, and D. R. Dengel, “Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise,” The Journal of Pediatrics, vol. 145, no. 6, pp. 731–736, 2004.
[57]  J. H. Park, M. Miyashita, Y. C. Kwon, et al., “A 12-week after-school physical activity programme improves endothelial cell function in overweight and obese children: a randomised controlled study,” BMC Pediatrics, vol. 12, no. 1, p. 111, 2012.
[58]  P. V. Vaitkevicius, J. L. Fleg, J. H. Engel et al., “Effects of age and aerobic capacity on arterial stiffness in healthy adults,” Circulation, vol. 88, no. 4, pp. 1456–1462, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413