全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2013 

The PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat

DOI: 10.1155/2013/305347

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR) agonist, tesaglitazar, 3?μmol/kg/day for 3 weeks. Whole body glucose disposal rate ( ) and hepatic glucose output (HGO) were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization ( ) were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R)-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of compared to obese controls. This involved increased insulin stimulation of in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover ( ), and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats. 1. Introduction Impaired trafficking of fatty acids between oxidative disposal in nonadipose tissues and storage in adipose tissue, leading to ectopic lipid accumulation, may be causative in impaired glucose control [1], dyslipidemia [2], and inflammation [3], all important factors in the etiology of type 2 diabetes and cardiovascular disease. Metabolic flexibility is defined as the ability to switch from predominantly lipid metabolism, with high fluxes of fatty acids in the fasting state, to enhanced glucose uptake, oxidation and storage under hyperinsulinemic conditions [4]. Impaired metabolic flexibility could in theory induce ectopic lipid accumulation either via defective control of fatty acid availability due to insulin resistance [5, 6] or impaired fatty acid oxidation capacity [7, 8] or both. Whatever the precise pathophysiological mechanism, it has been shown that lowering fatty acid availability by suppressing 24?h FFA levels, using short term intensive treatment with the nicotinic acid analog acipimox, induced substantial improvements in blood glucose control in patients with type 2 diabetes [9].

References

[1]  E. W. Kraegen and G. J. Cooney, “Free fatty acids and skeletal muscle insulin resistance,” Current Opinion in Lipidology, vol. 19, no. 3, pp. 235–241, 2008.
[2]  U. Julius, “Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia,” Experimental & Clinical Endocrinology and Diabetes, vol. 111, no. 5, pp. 246–250, 2003.
[3]  A. Kosteli, E. Sugaru, G. Haemmerle et al., “Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue,” Journal of Clinical Investigation, vol. 120, no. 10, pp. 3466–3479, 2010.
[4]  D. E. Kelley and L. J. Mandarino, “Fuel selection in human skeletal muscle in insulin resistance: a reexamination,” Diabetes, vol. 49, no. 5, pp. 677–683, 2000.
[5]  J. E. Galgani, C. Moro, and E. Ravussin, “Metabolic flexibility and insulin resistance,” American Journal of Physiology: Endocrinology & Metabolism, vol. 295, no. 5, pp. E1009–E1017, 2008.
[6]  L. M. Sparks, B. Ukropcova, J. Smith et al., “Relation of adipose tissue to metabolic flexibility,” Diabetes Research and Clinical Practice, vol. 83, no. 1, pp. 32–43, 2009.
[7]  K. Morino, K. F. Petersen, and G. I. Shulman, “Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction,” Diabetes, vol. 55, no. 2, pp. S9–S15, 2006.
[8]  D. E. Kelley, “Skeletal muscle fat oxidation: timing and flexibility are everything,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1699–1702, 2005.
[9]  A. A. Vaag and H. Beck-Nielsen, “Effects of prolonged Acipimox treatment on glucose and lipid metabolism and on in vivo insulin sensitivity in patients with non-insulin dependent diabetes mellitus,” Acta Endocrinologica, vol. 127, no. 4, pp. 344–350, 1992.
[10]  P. M. Davoren, W. Kelly, F. A. Gries, A. Hubinger, C. Whately-Smith, and K. G. M. M. Alberti, “Long-term effects of a sustained-release preparation of acipimox on dyslipidemia and glucose metabolism in non-insulin-dependent diabetes mellitus,” Metabolism, vol. 47, no. 3, pp. 250–256, 1998.
[11]  S. Keil, M. Müller, G. Zoller et al., “Identification and synthesis of novel inhibitors of acetyl-CoA carboxylase with in vitro and in vivo efficacy on fat oxidation,” Journal of Medicinal Chemistry, vol. 53, no. 24, pp. 8679–8687, 2010.
[12]  P. J. Randle, “Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years,” Diabetes-Metabolism Reviews, vol. 14, pp. 263–283, 1998.
[13]  G. Derosa and P. Maffioli, “Peroxisome proliferator-activated receptor- (PPAR-) agonists on glycemic control, lipid profile and cardiovascular risk,” Current Molecular Pharmacology, vol. 5, pp. 272–281, 2012.
[14]  N. Katsiki, D. Nikolic, G. Montalto, M. Banach, D. P. Mikhailidis, and M. Rizzo, “The role of fibrate treatment in dyslipidemia: an overview,” Current Pharmaceutical Design, vol. 19, pp. 3124–3131, 2013.
[15]  P. Cronet, J. F. W. Petersen, R. Folmer et al., “Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family,” Structure, vol. 9, no. 8, pp. 699–706, 2001.
[16]  B. Ljung, K. Bamberg, B. Dahll?f et al., “AZ 242, a novel PPARα/γ agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese zucker rats,” Journal of Lipid Research, vol. 43, no. 11, pp. 1855–1863, 2002.
[17]  N. D. Oakes, P. Thalén, T. Hultstrand et al., “Tesaglitazar, a dual PPARα/γ agonist, ameliorates glucose and lipid intolerance in obese Zucker rats,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 289, no. 4, pp. R938–R946, 2005.
[18]  E. W. Kraegen, D. E. James, A. B. Jenkins, and D. J. Chisholm, “Dose-response curves for in vivo insulin sensitivity in individual tissues in rats,” The American Journal of Physiology, vol. 248, no. 3, pp. E353–E362, 1985.
[19]  S. M. Furler, A. B. Jenkins, and E. W. Kraegen, “Effect of insulin on [3H]deoxy-D-glucose pharmacokinetics in the rat,” The American Journal of Physiology, vol. 255, no. 6, pp. E806–E811, 1988.
[20]  N. D. Oakes, A. Kjellstedt, G.-B. Forsberg et al., “Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2- bromopalmitate tracer,” Journal of Lipid Research, vol. 40, no. 6, pp. 1155–1169, 1999.
[21]  N. D. Oakes, P. Thalén, E. Aasum et al., “Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes,” American Journal of Physiology: Endocrinology & Metabolism, vol. 290, no. 5, pp. E870–E881, 2006.
[22]  V. P. Dole, “A relation between non-esterified fatty acids in plasma and the metabolism of glucose,” The Journal of Clinical Investigation, vol. 35, no. 2, pp. 150–154, 1956.
[23]  J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[24]  E. van Handel, “Estimation of glycogen in small amounts of tissue,” Analytical Biochemistry, vol. 11, no. 2, pp. 256–265, 1965.
[25]  A. B. Jenkins, S. M. Furler, and E. W. Kraegen, “2-deoxy-D-glucose metabolism in individual tissues of the rat in vivo,” International Journal of Biochemistry, vol. 18, no. 4, pp. 311–318, 1986.
[26]  N. D. Oakes, P. G. Thalén, S. M. Jacinto, and B. Ljung, “Thiazolidinediones increase plasma-adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability,” Diabetes, vol. 50, no. 5, pp. 1158–1165, 2001.
[27]  L. C. Groop, R. C. Bonadonna, S. Del Prato et al., “Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance,” Journal of Clinical Investigation, vol. 84, no. 1, pp. 205–213, 1989.
[28]  B. Fagerberg, S. Edwards, T. Halmos et al., “Tesaglitazar, a novel dual peroxisome proliferator-activated receptor α/γ agonist, dose-dependently improves the metabolic abnormalities associated with insulin resistance in a non-diabetic population,” Diabetologia, vol. 48, no. 9, pp. 1716–1725, 2005.
[29]  B. Fagerberg, H. Schuster, G. S. Birketvedt, S. Tonstad, K. P. ?hman, and I. Gause-Nilsson, “Improvement of postprandial lipid handling and glucose tolerance in a non-diabetic population by the dual PPARα/γ agonist, tesaglitazar,” Diabetes & Vascular Disease Research, vol. 4, no. 3, pp. 174–180, 2007.
[30]  B. J. Goldstein, J. Rosenstock, D. Anzalone, C. Tou, and K. P. ?hman, “Effect of tesaglitazar, a dual PPARα/γ agonist, on glucose and lipid abnormalities in patients with type 2 diabetes: a 12-week dose-ranging trial,” Current Medical Research and Opinion, vol. 22, no. 12, pp. 2575–2590, 2006.
[31]  L. Bowen, P. P. Stein, R. Stevenson, and G. I. Shulman, “The effect of CP 68,722, a thiozolidinedione derivative, on insulin sensitivity in lean and obese Zucker rats,” Metabolism, vol. 40, no. 10, pp. 1025–1030, 1991.
[32]  Y. Miyazaki, A. Mahankali, M. Matsuda et al., “Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone,” Diabetes Care, vol. 24, no. 4, pp. 710–719, 2001.
[33]  N. D. Oakes, A. Kjellstedt, P. Thalen, B. Ljung, and N. Turner, “Roles of fatty acid oversupply and impaired oxidation in lipid accumulation in tissues of obese rats,” Journal of Lipids, vol. 2013, Article ID 420754, 12 pages, 2013.
[34]  B. D. Hegarty, S. M. Furler, N. D. Oakes, E. W. Kraegen, and G. J. Cooney, “Peroxisome proliferator-activated receptor (PPAR) activation induces tissue-specific effects on fatty acid uptake and metabolism in vivo—a study using the novel PPARα/γ agonist tesaglitazar,” Endocrinology, vol. 145, no. 7, pp. 3158–3164, 2004.
[35]  Z. Chen, P. A. Vigueira, K. T. Chambers et al., “Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor γ-sparing thiazolidinedione,” Journal of Biological Chemistry, vol. 287, pp. 23537–23548, 2012.
[36]  A. S. Divakaruni, S. E. Wiley, G. W. Rogers et al., “Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 5422–5427, 2013.
[37]  T. J. Chahil and H. N. Ginsberg, “Diabetic dyslipidemia,” Endocrinology & Metabolism Clinics of North America, vol. 35, no. 3, pp. 491–510, 2006.
[38]  T. K. T. Lam, A. Carpentier, G. F. Lewis, G. van de Werve, I. G. Fantus, and A. Giacca, “Mechanisms of the free fatty acid-induced increase in hepatic glucose production,” American Journal of Physiology: Endocrinology & Metabolism, vol. 284, no. 5, pp. E863–E873, 2003.
[39]  V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012.
[40]  H. Schuster, B. Fagerberg, S. Edwards et al., “Tesaglitazar, a dual peroxisome proliferator-activated receptor α/γ agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance,” Atherosclerosis, vol. 197, no. 1, pp. 355–362, 2008.
[41]  N. D. Oakes, B. Ljung, and G. Camejo, “Correction of dysfunctional fatty acid metabolism using peroxisome proliferator activated receptor γ agonists,” Journal of the Royal Society of Medicine, vol. 95, no. 42, pp. 33–38, 2002.
[42]  R. E. Ratner, S. Parikh, and C. Tou, “Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes,” Diabetes & Vascular Disease Research, vol. 4, no. 3, pp. 214–221, 2007.
[43]  J. W. A. van der Hoorn, J. W. Jukema, L. M. Havekes et al., “The dual PPARα/γ agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE*3Leiden.CETP transgenic mice,” British Journal of Pharmacology, vol. 156, no. 7, pp. 1067–1075, 2009.
[44]  E. C. Chira, T. S. McMillen, S. Wang et al., “Tesaglitazar, a dual peroxisome proliferator-activated receptor alpha/gamma agonist, reduces atherosclerosis in female low density lipoprotein receptor deficient mice,” Atherosclerosis, vol. 195, no. 1, pp. 100–109, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133