Chronic kidney disease (CKD) is characterised by specific lipoprotein abnormalities and insulin resistance. Dual activation of the peroxisome proliferators-activated receptors (PPAR) α and γ can significantly improve insulin sensitivity. The aim of the study was to investigate the effects of a dual PPAR α/γ agonist on lipoprotein abnormalities in patients with CKD. One mg of the dual PPAR α/γ agonist tesaglitazar was given once daily during six weeks to CKD patients, and to healthy subjects. Plasma lipids, apolipoproteins (apo) and discrete lipoprotein subclasses were measured at baseline and end of treatment. In the CKD patients apoA-I increased significantly by 9%, and apoB decreased by 18%. There was an increase of apoC-III in HDL by 30%, and a parallel decrease of apoC-III in VLDL + LDL by 13%. Both the apoB-containing cholesterol-rich and the triglyceride-rich subclasses decreased significantly. With the exception of ApoC-III,all plasma lipids apolipoproteins and lipoprotein subclasses were reduced by treatment down to similar levels as the baseline levels of a healthy group of reference subjects. This study suggests that by improving insulin sensitivity a dual PPAR α/γ agonist has the potential to normalise most of the lipoprotein abnormalities in patients with CKD. 1. Introduction Chronic renal insufficiency is characterized by specific lipoprotein abnormalities [1–3], insulin resistance, and accelerated cardiovascular disease (CVD) [4–6]. The renal dyslipidemia shares many features with the alterations of the lipoprotein metabolism found in patients with insulin resistance [7]. Hence, reduction of insulin resistance in chronic renal insufficiency could theoretically have positive effects on renal dyslipidemia and, consequently, also positive effects on CVD morbidity in patients with chronic kidney disease (CKD). It is well documented that patients with chronic renal insufficiency as well as patients with diabetes mellitus are at high cardiovascular risk and that the characteristic lipoprotein abnormalities play an important role in atherogenesis [8, 9]. In a post-hoc analysis of the VA-HIT study the peroxisome proliferators-activated receptor (PPAR) α agonist gemfibrozil was shown to reduce cardiovascular morbidity in coronary patients with mild to moderate renal insufficiency [10]. Furthermore, in a post-hoc analysis of the PROactive trial the PPAR γ-agonist pioglitazone significantly reduced cardiovascular morbidity in type 2 diabetic patients with reduced renal function and documented macrovascular disease [11]. Tesaglitazar is a dual PPAR
References
[1]
P. O. Attman and O. Samuelsson, “Dyslipidemia of kidney disease,” Current Opinion in Lipidology, vol. 20, no. 4, pp. 293–299, 2009.
[2]
N. D. Vaziri, “Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences,” American Journal of Physiology, vol. 290, no. 2, pp. F262–F272, 2006.
[3]
E. Ritz and C. Wanner, “Lipid abnormalities and cardiovascular risk in renal disease,” Journal of the American Society of Nephrology, vol. 19, no. 6, pp. 1065–1070, 2008.
[4]
B. Becker, F. Kronenberg, J. T. Kielstein et al., “Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study,” Journal of the American Society of Nephrology, vol. 16, no. 4, pp. 1091–1098, 2005.
[5]
J. A. Charlesworth, A. D. Kriketos, J. E. Jones, J. H. Erlich, L. V. Campbell, and P. W. Peake, “Insulin resistance and postprandial triglyceride levels in primary renal disease,” Metabolism, vol. 54, no. 6, pp. 821–828, 2005.
[6]
R. H. Mak, “Insulin and its role in chronic kidney disease,” Pediatric Nephrology, vol. 23, no. 3, pp. 355–362, 2008.
[7]
G. A. Kaysen, “Metabolic syndrome and renal failure: similarities and differences,” Panminerva Medica, vol. 48, no. 3, pp. 151–164, 2006.
[8]
M. J. Sarnak, “Cardiovascular complications in chronic kidney disease,” American Journal of Kidney Diseases, vol. 41, supplement 5, pp. S11–S17, 2003.
[9]
T. Mazzone, A. Chait, and J. Plutzky, “Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies,” The Lancet, vol. 371, no. 9626, pp. 1800–1809, 2008.
[10]
M. Tonelli, D. Collins, S. Robins, H. Bloomfield, and G. C. Curhan, “Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency,” Kidney International, vol. 66, no. 3, pp. 1123–1130, 2004.
[11]
C. A. Schneider, E. Ferrannini, R. DeFronzo, G. Schernthaner, J. Yates, and E. Erdmann, “Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease,” Journal of the American Society of Nephrology, vol. 19, no. 1, pp. 182–187, 2008.
[12]
B. Fagerberg, H. Schuster, G. S. Birketvedt, S. Tonstad, K. P. ?hman, and I. Gause-Nilsson, “Improvement of postprandial lipid handling and glucose tolerance in a non-diabetic population by the dual PPARα/γ agonist, tesaglitazar,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 174–180, 2007.
[13]
H. Bays, J. McElhattan, and B. S. Bryzinski, “A double-blind, randomised trial of tesaglitazar versus pioglitazone in patients with type 2 diabetes mellitus,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 181–193, 2007.
[14]
R. E. Ratner, S. Parikh, and C. Tou, “Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 214–221, 2007.
[15]
AstraZeneca, “A 24-week, randomised parallel-group, multi-centre, active controlled (pioglitazone) study of the renal effects of tesaglitazar in patients with type 2 diabetes mellitus: ARMOR (Analysing Renal Mechanisms of Creatinine Excretion in Patients on Tesaglitazar),” February 2013, http://www.astrazenecaclinicaltrials.com/_mshost800325/content/clinical-trials/resources/pdf/8579785.
[16]
B. Hamrén, H. Ericsson, O. Samuelsson, and M. O. Karlsson, “Mechanistic modelling of tesaglitazar pharmacokinetic data in subjects with various degrees of renal function—evidence of interconversion,” British Journal of Clinical Pharmacology, vol. 65, no. 6, pp. 855–863, 2008.
[17]
P. O. Attman and P. Alaupovic, “Lipid and apolipoprotein profiles of uremic dyslipoproteinemia—relation to renal function and dialysis,” Nephron, vol. 57, no. 4, pp. 401–410, 1991.
[18]
P. Alaupovic, P. O. Attman, C. Knight-Gibson, H. Mulec, L. Weiss, and O. Samuelsson, “Effect of fluvastatin on apolipoprotein-defined lipoprotein subclasses in patients with chronic renal insufficiency,” Kidney International, vol. 69, no. 10, pp. 1865–1871, 2006.
[19]
J. Otvos, “Measurement of triglyceride-rich lipoproteins by nuclear magnetic resonance spectroscopy,” Clinical Cardiology, vol. 22, no. 6, pp. II21–II27, 1999.
[20]
M. Aurell, “Accurate and feasible measurements of GFR—is the iohexol clearance the answer?” Nephrology Dialysis Transplantation, vol. 9, no. 9, pp. 1222–1224, 1994.
[21]
H. Schuster, B. Fagerberg, S. Edwards et al., “Tesaglitazar, a dual peroxisome proliferator-activated receptor α/γ agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance,” Atherosclerosis, vol. 197, no. 1, pp. 355–362, 2008.
[22]
O. Samuelsson, H. Mulec, C. Knight-Gibson et al., “Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency,” Nephrology Dialysis Transplantation, vol. 12, no. 9, pp. 1908–1915, 1997.
[23]
S. J. Murdoch and W. C. Breckenridge, “Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL,” Atherosclerosis, vol. 118, no. 2, pp. 193–212, 1995.
[24]
P. Alaupovic, P. Blackett, W. Wang, and E. Lee, “Characterization of the metabolic syndrome by apolipoproteins in the Oklahoma Cherokee,” Journal of the Cardiometabolic Syndrome, vol. 3, no. 4, pp. 193–199, 2008.
[25]
A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004.
[26]
J. J. Carrero and P. Stenvinkel, “Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 1, pp. S49–S55, 2009.
[27]
M. Laakso, “Lipids in type 2 diabetes,” Seminars in Vascular Medicine, vol. 2, no. 1, pp. 59–66, 2002.
[28]
G. Walldius, I. Jungner, I. Holme, A. H. Aastveit, W. Kolar, and E. Steiner, “High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study,” The Lancet, vol. 358, no. 9298, pp. 2026–2033, 2001.
[29]
J. J. P. Kastelein, W. A. Van Der Steeg, I. Holme et al., “Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment,” Circulation, vol. 117, no. 23, pp. 3002–3009, 2008.
[30]
F. M. Sacks, P. Alaupovic, L. A. Moye et al., “VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial,” Circulation, vol. 102, no. 16, pp. 1886–1892, 2000.
[31]
P. G. Scheffer, T. Teerlink, J. M. Dekker et al., “Increased plasma apolipoprotein C-III concentration independently predicts cardiovascular mortality: the Hoorn study,” Clinical Chemistry, vol. 54, no. 8, pp. 1325–1330, 2008.
[32]
D. C. Chan, M. M. Chen, E. M. M. Ooi, and G. F. Watts, “An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor?” International Journal of Clinical Practice, vol. 62, no. 5, pp. 799–809, 2008.
[33]
A. Kawakami and M. Yoshida, “Apolipoprotein C-III links dyslipidemeia with atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 16, pp. 6–11, 2009.