全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2013 

Combined Effects of PPARγ Agonists and Epidermal Growth Factor Receptor Inhibitors in Human Proximal Tubule Cells

DOI: 10.1155/2013/982462

Full-Text   Cite this paper   Add to My Lib

Abstract:

We aimed to determine whether epidermal growth factor receptor (EGFR) inhibition, in addition to a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, prevents high-glucose-induced proximal tubular fibrosis, inflammation, and sodium and water retention in human proximal tubule cells exposed to normal glucose; high glucose; high glucose with the PPARγ agonist pioglitazone or with the P-EGFR inhibitor, gefitinib; or high glucose with both pioglitazone and gefitinib. We have shown that high glucose increases AP-1 and NFκB binding activity, downstream phosphorylation of EGFR and Erk1/2, and fibronectin and collagen IV expression. Pioglitazone reversed these effects but upregulated NHE3 and AQP1 expression. Gefitinib inhibited high glucose induced fibronectin and collagen IV, and EGFR and Erk1/2 phosphorylation and reversed pioglitazone-induced increases in NHE3 and AQP1 expression. Our data suggests that combination of an EGFR inhibitor and a PPARγ agonist mitigates high-glucose-induced fibrosis and inflammation and reverses the upregulation of transporters and channels involved in sodium and water retention in human proximal tubule cells. Hence EGFR blockade may hold promise, not only in limiting tubulointerstitial pathology in diabetic nephropathy, but also in limiting the sodium and water retention observed in patients with diabetes and exacerbated by PPARγ agonists. 1. Introduction Cellular sodium and water transport are dysregulated in diabetes mellitus resulting in volume-mediated hypertension and cardiac complications. We have previously demonstrated that epidermal growth factor (EGF) and high-glucose-induced sodium reabsorption in proximal tubule cells by increasing the activity of the sodium hydrogen exchanger-3 (NHE3). This is dependent on EGFR signalling and downstream activation of serum and glucocorticoid-inducible kinase (Sgk-1) [1]. Enhanced expression and/or activity of the EGF receptor (EGFR) has previously been observed in the kidneys of diabetic animals [2] and tubular EGFR expression correlates with the extent of interstitial fibrosis [3]. Furthermore, the EGFR is activated/transactivated by multiple factors inherent in the diabetic milieu, including high glucose [4], angiotensin II (AngII) [5], and aldosterone [6], all of which have been implicated in the pathogenesis of diabetic nephropathy. Recent studies have supported the hypothesis that inhibition of the EGFR provides an attractive therapeutic target for the treatment of diabetic nephropathy [7]. Thiazolidinediones (TZDs) are synthetic peroxisome

References

[1]  S. Saad, V. A. Stevens, L. Wassef et al., “High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule,” Kidney International, vol. 68, no. 3, pp. 985–997, 2005.
[2]  V. Portik-Dobos, A. K. Harris, W. Song et al., “Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes,” American Journal of Physiology, vol. 290, no. 2, pp. R435–R441, 2006.
[3]  B. Sis, S. Sarioglu, A. Celik, M. Zeybel, A. Soylu, and S. Bora, “Epidermal growth factor receptor expression in human renal allograft biopsies: an immunohistochemical study,” Transplant Immunology, vol. 13, no. 3, pp. 229–232, 2004.
[4]  A. Konishi and B. C. Berk, “Epidermal growth factor receptor transactivation is regulated by glucose in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 35049–35056, 2003.
[5]  B. T. Andresen, J. J. Linnoila, E. K. Jackson, and G. G. Romero, “Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells,” Hypertension, vol. 41, no. 3, pp. 781–786, 2003.
[6]  H. Garty, “Regulation of the epithelial Na+ channel by aldosterone: open questions and emerging answers,” Kidney International, vol. 57, no. 4, pp. 1270–1276, 2000.
[7]  D. Wu, F. Peng, B. Zhang et al., “EGFR-PLCγ1 signaling mediates high glucose-induced PKCβ1-Akt activation and collagen I upregulation in mesangial cells,” American Journal of Physiology, vol. 297, no. 3, pp. F822–F834, 2009.
[8]  Y. Zhang, C. W. Park, F. Zheng, X. Fan, G. E. Striker, M. D. Breyer, et al., “Endogenous PPARg activity ameliorates diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, p. 392A, 2003.
[9]  C. Baylis, E. A. Atzpodien, G. Freshour, and K. Engels, “Peroxisome proliferator-activated receptor γ agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity,” Journal of Pharmacology and Experimental Therapeutics, vol. 307, no. 3, pp. 854–860, 2003.
[10]  P. Katavetin, S. Eiam-Ong, and S. Suwanwalaikorn, “Pioglitazone reduces urinary protein and urinary transforming growth factor-β excretion in patients with type 2 diabetes and overt nephropathy,” Journal of the Medical Association of Thailand, vol. 89, no. 2, pp. 170–177, 2006.
[11]  H. F. Liu, L. Q. Guo, Y. Y. Huang et al., “Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin-induced nephropathy rats via slit diaphragm protection: original Article,” Nephrology, vol. 15, no. 1, pp. 75–83, 2010.
[12]  C. Nofziger and B. L. Blazer-Yost, “PPARγ agonists, modulation of ion transporters, and fluid retention,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2481–2483, 2009.
[13]  S. Singh, Y. K. Loke, and C. D. Furberg, “Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1189–1195, 2007.
[14]  S. Saad, D. J. Agapiou, X. M. Chen, V. Stevens, and C. A. Pollock, “The role of Sgk-1 in the upregulation of transport proteins by PPAR-γ agonists in human proximal tubule cells,” Nephrology Dialysis Transplantation, vol. 24, no. 4, pp. 1130–1141, 2009.
[15]  V. Vallon and F. Lang, “New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure,” Current Opinion in Nephrology and Hypertension, vol. 14, no. 1, pp. 59–66, 2005.
[16]  U. Panchapakesan, C. A. Pollock, and X. M. Chen, “The effect of high glucose and PPAR-γ agonists on PPAR-γ expression and function in HK-2 cells,” American Journal of Physiology, vol. 287, no. 3, pp. F528–F534, 2004.
[17]  S. Zafiriou, S. R. Stanners, T. S. Polhill, P. Poronnik, and C. A. Pollock, “Pioglitazone increases renal tubular cell albumin uptake but limits proinflammatory and fibrotic responses,” Kidney International, vol. 65, no. 5, pp. 1647–1653, 2004.
[18]  S. Zafiriou, S. R. Stanners, S. Saad, T. S. Polhill, P. Poronnik, and C. A. Pollock, “Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 638–645, 2005.
[19]  U. Panchapakesan, S. Sumual, C. A. Pollock, and X. Chen, “PPARγ agonists exert antifibrotic effects in renal tubular cells exposed to high glucose,” American Journal of Physiology, vol. 289, no. 5, pp. F1153–F1158, 2005.
[20]  U. Panchapakesan, X. M. Chen, and C. A. Pollock, “Drug insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection,” Nature Clinical Practice Nephrology, vol. 1, no. 1, pp. 33–43, 2005.
[21]  P. Wabel, U. Moissl, P. Chamney et al., “Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload,” Nephrology Dialysis Transplantation, vol. 23, no. 9, pp. 2965–2971, 2008.
[22]  D. J. Rozansky, J. Wang, N. Doan et al., “Hypotonic induction of SGK1 and Na+ transport in A6 cells,” American Journal of Physiology, vol. 283, no. 1, pp. F105–F113, 2002.
[23]  K. Omata, N. G. Abraham, and M. L. Schwartzman, “Renal cytochrome P-450-arachidonic acid metabolism: localization and hormonal regulation in SHR,” American Journal of Physiology, vol. 262, no. 4, pp. F591–F599, 1992.
[24]  J. Beltowski and E. Lowicka, “EGF receptor as a drug target in arterial hypertension,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 5, pp. 526–538, 2009.
[25]  A. W. Krug, F. Papavassiliou, U. Hopfer, K. J. Ullrich, and M. Gekle, “Aldosterone stimulates surface expression of NHE3 in renal proximal brush borders,” Pflugers Archiv European Journal of Physiology, vol. 446, no. 4, pp. 492–496, 2003.
[26]  A. W. Krug, C. Grossmann, C. Schuster et al., “Aldosterone stimulates epidermal growth factor receptor expression,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 43060–43066, 2003.
[27]  I. F. Benter, M. Benboubetra, A. J. Hollins, M. H. M. Yousif, H. Canatan, and S. Akhtar, “Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature,” Vascular Pharmacology, vol. 51, no. 4, pp. 236–245, 2009.
[28]  L. Nakopoulou, K. Stefanaki, J. Boletis et al., “Immunohistochemical study of epidermal growth factor receptor (EFGR) in various types of renal injury,” Nephrology Dialysis Transplantation, vol. 9, no. 7, pp. 764–769, 1994.
[29]  R. Harris, “EGFR signaling in podocytes at the root of glomerular disease,” Nature Medicine, vol. 17, no. 10, pp. 1188–1189, 2011.
[30]  G. Bollee, M. Flamant, S. Schordan, C. Fligny, E. Rumpel, M. Milon, et al., “Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis,” Nature Medicine, vol. 17, no. 10, pp. 1242–1250, 2011.
[31]  M. Flamant, G. Bollee, C. Henique, and P. L. Tharaux, “Epidermal growth factor: a new therapeutic target in glomerular disease,” Nephrology Dialysis Transplantation, vol. 27, no. 4, pp. 1297–1304, 2012.
[32]  R. E. Gilbert, A. Cox, P. G. McNally et al., “Increased epidermal growth factor in experimental diabetes related kidney growth in rats,” Diabetologia, vol. 40, no. 7, pp. 778–785, 1997.
[33]  S. Chen, Z. A. Khan, M. Cukiernik, and S. Chakrabarti, “Differential activation of NF-κB and AP-1 in increased fibronectin synthesis in target organs of diabetic complications,” American Journal of Physiology, vol. 284, no. 6, pp. E1089–E1097, 2003.
[34]  C. Weigert, U. Sauer, K. Brodbeck, A. Pfeiffer, H. U. H?ring, and E. D. Schleicher, “AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-β1 promoter in mesangial cells,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 2007–2016, 2000.
[35]  R. P. Nagarajan, F. Chen, W. Li et al., “Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB,” Biochemical Journal, vol. 348, no. 3, pp. 591–596, 2000.
[36]  H. Ha, R. Y. Mi, J. C. Yoon, M. Kitamura, and B. L. Hi, “Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells,” Journal of the American Society of Nephrology, vol. 13, no. 4, pp. 894–902, 2002.
[37]  N. Liu, J. K. Guo, M. Pang, E. Tolbert, M. Ponnusamy, R. Gong, et al., “Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis,” Journal of the American Society of Nephrology, vol. 23, no. 5, pp. 854–867, 2012.
[38]  L. Wassef, D. J. Kelly, and R. E. Gilbert, “Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes,” Kidney International, vol. 66, no. 5, pp. 1805–1814, 2004.
[39]  A. Andrew, J. W. Kathryn, J. C. Alison, Z. Yuan, E. G. Richard, and J. K. Darren, “Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy,” Nephrology, vol. 16, no. 6, pp. 573–581, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133