全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2013 

Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

DOI: 10.1155/2013/938401

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. 1. Introduction Intracellular long-chain fatty acids (FAs) are key components in the synthesis of cellular membranes as well as being utilized as signaling molecules and for energy delivery [1, 2]. The preservation of a proper balance between absorption, secretion, and storage of FA is therefore, integral for cellular physiology [1]. Increasingly prominent diseases such as obesity, cardiovascular diseases, type II diabetes, and atherosclerosis, to a large extent, all evolve from disorders of lipid metabolism. In vivo, due to their poor aqueous solubility, FAs are bound and transported by a class of intracellular lipid binding proteins (iLBPs) termed fatty acid binding proteins (FABPs) [1–4]. Structurally, FABPs possess a similar tertiary fold, consisting of ten antiparallel β-strands, which form a clam shell-like β-barrel structure (cf. Figure 3(c)) [3, 5, 6]. The β-barrel is capped by a pair of α-helices that enclose an internal cavity, which forms the ligand binding pocket. A mechanism for ligand binding termed the “portal hypothesis” has been proposed, where the FA molecule enters the protein through a dynamic structure formed by the α-helical region, before

References

[1]  J. F. C. Glatz and J. Storch, “Unravelling the significance of cellular fatty acid-binding proteins,” Current Opinion in Lipidology, vol. 12, no. 3, pp. 267–274, 2001.
[2]  R. M. Kaikaus, N. M. Bass, and R. K. Ockner, “Functions of fatty acid binding proteins,” Experientia, vol. 46, no. 6, pp. 617–630, 1990.
[3]  M. Furuhashi and G. S. Hotamisligil, “Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets,” Nature Reviews Drug Discovery, vol. 7, no. 6, pp. 489–503, 2008.
[4]  J. Storch and A. E. A. Thumser, “The fatty acid transport function of fatty acid-binding proteins,” Biochimica et Biophysica Acta, vol. 1486, no. 1, pp. 28–44, 2000.
[5]  J. A. Hamilton, “How fatty acids bind to proteins: the inside story from protein structures,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 67, no. 2-3, pp. 65–72, 2002.
[6]  F. Schroeder, C. A. Jolly, T. H. Cho, and A. Frolov, “Fatty acid binding protein isoforms: structure and function,” Chemistry and Physics of Lipids, vol. 92, no. 1, pp. 1–25, 1998.
[7]  M. E. Hodsdon and D. P. Cistola, “Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry,” Biochemistry, vol. 36, no. 6, pp. 1450–1460, 1997.
[8]  M. E. Hodsdon and D. P. Cistola, “Ligand binding alters the backbone mobility of intestinal fatty acid- binding protein as monitored by 15n nmr relaxation and 1h exchange,” Biochemistry, vol. 36, no. 8, pp. 2278–2290, 1997.
[9]  A. E. Jenkins, J. A. Hockenberry, T. Nguyen, and D. A. Bernlohr, “Testing of the portal hypothesis: analysis of a V32G, F57G, K58G mutant of the fatty acid binding protein of the murine adipocyte,” Biochemistry, vol. 41, no. 6, pp. 2022–2027, 2002.
[10]  C. Dreyer, H. Keller, A. Mahfoudi, V. Laudet, G. Krey, and W. Wahli, “Positive regulation of the peroxisomal β-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR),” Biology of the Cell, vol. 77, no. 1, pp. 67–76, 1993.
[11]  C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, and W. Wahli, “Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors,” Cell, vol. 68, no. 5, pp. 879–887, 1992.
[12]  T. Lemberger, O. Braissant, C. Juge-Aubry et al., “PPAR tissue distribution and interactions with other hormone-signaling pathways,” Annals of the New York Academy of Sciences, vol. 804, pp. 231–251, 1996.
[13]  H. A. Hostetler, A. D. Petrescu, A. B. Kier, and F. Schroeder, “Peroxisome proliferator-activated receptor α interacts with high affinity and is conformationally responsive to endogenous ligands,” Journal of Biological Chemistry, vol. 280, no. 19, pp. 18667–18682, 2005.
[14]  O. Braissant, F. Foufelle, C. Scotto, M. Dau?a, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996.
[15]  P. Escher, O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, and B. Desvergne, “Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding,” Endocrinology, vol. 142, no. 10, pp. 4195–4202, 2001.
[16]  S. I. Anghel and W. Wahli, “Fat poetry: a kingdom for PPARγ,” Cell Research, vol. 17, no. 6, pp. 486–511, 2007.
[17]  T. Lemberger, B. Desvergne, and W. Wahli, “Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 335–363, 1996.
[18]  L. Michalik, B. Desvergne, C. Dreyer, M. Gavillet, R. N. Laurini, and W. Wahli, “PPAR expression and function during vertebrate development,” International Journal of Developmental Biology, vol. 46, no. 1, pp. 105–114, 2002.
[19]  N. Noy, “Ligand specificity of nuclear hormone receptors: sifting through promiscuity,” Biochemistry, vol. 46, no. 47, pp. 13461–13467, 2007.
[20]  W. Bourguet, P. Germain, and H. Gronemeyer, “Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications,” Trends in Pharmacological Sciences, vol. 21, no. 10, pp. 381–388, 2000.
[21]  P. Cronet, J. F. W. Petersen, R. Folmer et al., “Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family,” Structure, vol. 9, no. 8, pp. 699–706, 2001.
[22]  Q. Lin, S. E. Ruuska, N. S. Shaw, D. Dong, and N. Noy, “Ligand selectivity of the peroxisome proliferator-activated receptor α,” Biochemistry, vol. 38, no. 1, pp. 185–190, 1999.
[23]  J. B. Lowe, J. C. Sacchettini, M. Laposata, J. J. McQuillan, and J. I. Gordon, “Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein,” Journal of Biological Chemistry, vol. 262, no. 12, pp. 5931–5937, 1987.
[24]  H. Poirier, I. Niot, P. Degrace, M. C. Monnot, A. Bernard, and P. Besnard, “Fatty acid regulation of fatty acid-binding protein expression in the small intestine,” American Journal of Physiology, vol. 273, no. 2, pp. G289–G295, 1997.
[25]  S. Chuang, T. Velkov, J. Horne, C. J. H. Porter, and M. J. Scanlon, “Characterization of the drug binding specificity of rat liver fatty acid binding protein,” Journal of Medicinal Chemistry, vol. 51, no. 13, pp. 3755–3764, 2008.
[26]  S. Chuang, T. Velkov, J. Horne et al., “Probing the fibrate binding specificity of rat liver fatty acid binding protein,” Journal of Medicinal Chemistry, vol. 52, no. 17, pp. 5344–5355, 2009.
[27]  T. Velkov, “Thermodynamics of lipophilic drug binding to intestinal fatty acid binding protein and permeation across membranes,” Molecular Pharmaceutics, vol. 6, no. 2, pp. 557–570, 2009.
[28]  T. Velkov, S. Chuang, J. Wielens et al., “The interaction of lipophilic drugs with intestinal fatty acid-binding protein,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 17769–17776, 2005.
[29]  T. Velkov, J. Horne, A. Laguerre, E. Jones, M. J. Scanlon, and C. J. H. Porter, “Examination of the role of intestinal fatty acid-binding protein in drug absorption using a parallel artificial membrane permeability assay,” Chemistry and Biology, vol. 14, no. 4, pp. 453–465, 2007.
[30]  J. B. Lowe, M. S. Boguski, and D. A. Sweetser, “Human liver fatty acid binding protein. Isolation of a full length cDNA and comparative sequence analyses of orthologous and paralogous proteins,” Journal of Biological Chemistry, vol. 260, no. 6, pp. 3413–3417, 1985.
[31]  W. Wahli, “PPARγ: ally and foe in bone metabolism,” Cell Metabolism, vol. 7, no. 3, pp. 188–190, 2008.
[32]  T. Helledie, M. Antonius, R. V. Sorensen et al., “Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm,” Journal of Lipid Research, vol. 41, no. 11, pp. 1740–1751, 2000.
[33]  J. W. Lawrence, D. J. Kroll, and P. I. Eacho, “Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus,” Journal of Lipid Research, vol. 41, no. 9, pp. 1390–1401, 2000.
[34]  C. Wolfrum, T. B?rchers, J. C. Sacchettini, and F. Spener, “Binding of fatty acids and peroxisome proliferators to orthologous fatty acid binding proteins from human, murine, and bovine liver,” Biochemistry, vol. 39, no. 6, pp. 1469–1474, 2000.
[35]  A. Budhu, R. Gillilan, and N. Noy, “Localization of the RAR interaction domain of cellular retinoic acid binding protein-II,” Journal of Molecular Biology, vol. 305, no. 4, pp. 939–949, 2001.
[36]  C. Wolfrum, C. M. Borrmann, T. B?rchers, and F. Spener, “Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2323–2328, 2001.
[37]  A. Adida and F. Spener, “Intracellular lipid binding proteins and nuclear receptors involved in branched-chain fatty acid signaling,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 67, no. 2-3, pp. 91–98, 2002.
[38]  A. S. Budhu and N. Noy, “Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2632–2641, 2002.
[39]  H. Huang, O. Starodub, A. McIntosh, A. B. Kier, and F. Schroeder, “Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells,” Journal of Biological Chemistry, vol. 277, no. 32, pp. 29139–29151, 2002.
[40]  N. S. Tan, N. S. Shaw, N. Vinckenbosch et al., “Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription,” Molecular and Cellular Biology, vol. 22, no. 14, pp. 5114–5127, 2002.
[41]  H. Huang, O. Starodub, A. McIntosh et al., “Liver fatty acid-binding protein colocalizes with peroxisome proliferator activated receptor α and enhances ligand distribution to nuclei of living cells,” Biochemistry, vol. 43, no. 9, pp. 2484–2500, 2004.
[42]  R. J. Sessler and N. Noy, “A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II,” Molecular Cell, vol. 18, no. 3, pp. 343–353, 2005.
[43]  S. D. Avers, K. L. Nedrow, R. E. Gillilan, and N. Noy, “Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARγ by FABP4,” Biochemistry, vol. 46, no. 23, pp. 6744–6752, 2007.
[44]  R. E. Gillilan, S. D. Ayers, and N. Noy, “Structural basis for activation of fatty acid-binding protein 4,” Journal of Molecular Biology, vol. 372, no. 5, pp. 1246–1260, 2007.
[45]  T. T. Schug, D. C. Berry, N. S. Shaw, S. N. Travis, and N. Noy, “Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors,” Cell, vol. 129, no. 4, pp. 723–733, 2007.
[46]  C. Wolfrum, “Cytoplasmic fatty acid binding protein sensing fatty acids for peroxisome proliferator activated receptor activation,” Cellular and Molecular Life Sciences, vol. 64, no. 19-20, pp. 2465–2476, 2007.
[47]  F. Schroeder, A. D. Petrescu, H. Huang et al., “Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription,” Lipids, vol. 43, no. 1, pp. 1–17, 2008.
[48]  J. Storch and B. Corsico, “The emerging functions and mechanisms of mammalian fatty acid-binding proteins,” Annual Review of Nutrition, vol. 28, pp. 73–95, 2008.
[49]  H. A. Hostetler, A. L. McIntosh, B. P. Atshaves et al., “L-FABP directly interacts with PPARα in cultured primary hepatocytes,” Journal of Lipid Research, vol. 50, no. 8, pp. 1663–1675, 2009.
[50]  H. A. Hostetler, M. Balanarasimha, H. Huang et al., “Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor α,” Journal of Lipid Research, vol. 51, no. 11, pp. 3103–3116, 2010.
[51]  B. Ljung, K. Bamberg, B. Dahll?f et al., “AZ 242, a novel PPARα/γ agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese zucker rats,” Journal of Lipid Research, vol. 43, no. 11, pp. 1855–1863, 2002.
[52]  S. A. Fyffe, M. S. Alphey, L. Buetow et al., “Recombinant human PPAR-β/δ ligand-binding domain is locked in an activated conformation by endogenous fatty acids,” Journal of Molecular Biology, vol. 356, no. 4, pp. 1005–1013, 2006.
[53]  J. Marley, M. Lu, and C. Bracken, “A method for efficient isotopic labeling of recombinant proteins,” Journal of Biomolecular NMR, vol. 20, no. 1, pp. 71–75, 2001.
[54]  T. Velkov, M. L. R. Lim, B. Capuano, and R. Prankerd, “A protocol for the combined sub-fractionation and delipidation of lipid binding proteins using hydrophobic interaction chromatography,” Journal of Chromatography B, vol. 867, no. 2, pp. 238–246, 2008.
[55]  F. H. Schumann, H. Riepl, T. Maurer, W. Gronwald, K. P. Neidig, and H. R. Kalbitzer, “Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions,” Journal of Biomolecular NMR, vol. 39, no. 4, pp. 275–289, 2007.
[56]  S. B. Shuker, P. J. Hajduk, R. P. Meadows, and S. W. Fesik, “Discovering high-affinity ligands for proteins: SAR by NMR,” Science, vol. 274, no. 5292, pp. 1531–1534, 1996.
[57]  J. F. Doreleijers, S. Mading, D. Maziuk et al., “BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank,” Journal of Biomolecular NMR, vol. 26, no. 2, pp. 139–146, 2003.
[58]  T. Velkov, M. L. R. Lim, J. Horne, J. S. Simpson, C. J. H. Porter, and M. J. Scanlon, “Characterization of lipophilic drug binding to rat intestinal fatty acid binding protein,” Molecular and Cellular Biochemistry, vol. 326, no. 1-2, pp. 87–95, 2009.
[59]  T. Velkov, K. A. Rimmer, and S. J. Headey, “Ligand-enhanced expression and in-cell assay of human peroxisome proliferator-activated receptor alpha ligand binding domain,” Protein Expression and Purification, vol. 70, no. 2, pp. 260–269, 2010.
[60]  A. Frolov, K. Miller, J. T. Billheimer, T. H. Cho, and F. Schroeder, “Lipid specificity and location of the sterol carrier protein-2 fatty acid-binding site: a fluorescence displacement and energy transfer study,” Lipids, vol. 32, no. 11, pp. 1201–1209, 1997.
[61]  F. Schroeder, S. C. Myers-Payne, J. T. Billheimer, and W. G. Wood, “Probing the ligand binding sites of fatty acid and sterol carrier proteins: effects of ethanol,” Biochemistry, vol. 34, no. 37, pp. 11919–11927, 1995.
[62]  G. Nemecz, T. Hubbell, J. R. Jefferson, J. B. Lowe, and F. Schroeder, “Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins,” Archives of Biochemistry and Biophysics, vol. 286, no. 1, pp. 300–309, 1991.
[63]  C. Wolfrum, C. Buhlmann, B. Rolf, T. B?rchers, and F. Spener, “Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake,” Biochimica et Biophysica Acta, vol. 1437, no. 2, pp. 194–201, 1999.
[64]  Y. He, X. Yang, H. Wang et al., “Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein,” Biochemistry, vol. 46, no. 44, pp. 12543–12556, 2007.
[65]  A. Sharma, “Fatty acid induced remodeling within the human liver fatty acid-binding protein,” The Journal of Biological Chemistry, vol. 286, pp. 31924–31928, 2011.
[66]  J. Thompson, N. Winter, D. Terwey, J. Bratt, and L. Banaszak, “The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 7140–7150, 1997.
[67]  J. Cai, C. Lucke, Z. Chen, Y. Qiao, E. Klimtchuk, and J. A. Hamilton, “Solution structure and backbone dynamics of human liver fatty acid binding protein: fatty acid binding revisited,” Biophysical Journal, vol. 102, pp. 2585–2594, 2012.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133