全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hypofractionated External-Beam Radiotherapy for Prostate Cancer

DOI: 10.1155/2013/103547

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are radiobiological rationales supporting hypofractionated radiotherapy for prostate cancer. The recent advancements in treatment planning and delivery allow sophisticated radiation treatments to take advantage of the differences in radiobiology of prostate cancer and the surrounding normal tissues. The preliminary results from clinical studies indicate that abbreviated fractionation programs can result in successful treatment of localized prostate cancer without escalation of late toxicity. 1. Introduction Prostate cancer is the most common cancer diagnosed in American men after non-melanomatous skin cancer. According to the American Cancer Society estimate, there will be more than 241,000 new cases of prostate cancer in the United States in 2012. Approximately 28,000 men in the USA will die of prostate cancer, making it the second leading cause of cancer death in this country [1]. In most cases the prostate cancer is organ-confined at the time of initial diagnosis [2]. Radical prostatectomy and radiotherapy, either given as a seed implant or external beam radiation therapy, are the accepted standard options for treating the primary tumor itself, and androgen deprivation may be added selectively for certain cases with an intermediate or high risk of dissemination based on clinical and pathologic features evident at the time of diagnosis. Regarding the specific option of external beam radiotherapy, the current widely accepted standard regimen for organ-confined prostate cancer in the USA involves approximately eight weeks of fractionated treatments with a daily dose of 1.8–2.0?Gy to a total dose in the range of 70–80?Gy. At some centers the treatments, also called fractions, are given over 9-10 weeks [3]. Although many patients have been successfully treated with radiotherapy regimens of this nature, the optimal radiation schedule for the curative treatment of prostate cancer remains an unsettled question. For patients with clinical features suggesting at least an intermediate level of aggressiveness, a moderate dose escalation has been demonstrated to improve biochemical control with acceptable toxicity using contemporary radiotherapy techniques [4, 5]. Unfortunately, dose escalation using a conventionally fractionated treatment schedule requires a lengthened treatment course that is less convenient for patients and more costly for government and private insurance carriers. Emerging evidence accumulating from multiple recent studies indicates that more convenient and efficient shortened courses of radiotherapy for prostate cancer yield outcomes

References

[1]  Cancer Facts and Figures 2012, American Cancer Society, 2012.
[2]  E. L. Paquette, L. Sun, L. R. Paquette, R. Connelly, D. G. Mcleod, and J. W. Moul, “Improved prostate cancer-specific survival and other disease parameters: impact of prostate-specific antigen testing,” Urology, vol. 60, no. 5, pp. 756–759, 2002.
[3]  M. J. Zelefsky, X. Pei, J. F. Chou et al., “Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes,” European Urology, vol. 60, no. 6, pp. 1133–1139, 2011.
[4]  D. A. Kuban, S. L. Tucker, L. Dong et al., “Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 1, pp. 67–74, 2008.
[5]  A. L. Zietman, K. Bae, J. D. Slater et al., “Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from Proton Radiation Oncology Group/American College Of Radiology 95-09,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1106–1111, 2010.
[6]  H. D. Thames and H. D. Suit, “Tumor radioresponsiveness versus fractionation sensitivity,” International Journal of Radiation Oncology Biology Physics, vol. 12, no. 4, pp. 687–691, 1986.
[7]  F. Leborgne, J. Fowler, J. H. Leborgne, and J. Mezzera, “Later outcomes and alpha/beta estimate from hypofractionated conformal three-dimensional radiotherapy versus standard fractionation for localized prostate cancer,” International Journal of Radiation Oncology, Biology, Physics, vol. 82, no. 3, pp. 1200–1207, 2012.
[8]  J. F. Fowler, M. A. Ritter, R. J. Chappell, and D. J. Brenner, “What hypofractionated protocols should be tested for prostate cancer?” International Journal of Radiation Oncology Biology Physics, vol. 56, no. 4, pp. 1093–1104, 2003.
[9]  D. J. Brenner, “The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction,” Seminars in Radiation Oncology, vol. 18, no. 4, pp. 234–239, 2008.
[10]  D. J. Brenner, A. A. Martinez, G. K. Edmundson, C. Mitchell, H. D. Thames, and E. P. Armour, “Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue,” International Journal of Radiation Oncology Biology Physics, vol. 52, no. 1, pp. 6–13, 2002.
[11]  R. G. Dale and B. Jones, “Is the α/β for prostate tumors really low? In regard to Fowler et al., IJROBP 2001;50:1021–1031,” International Journal of Radiation Oncology Biology Physics, vol. 52, no. 5, pp. 1427–1428, 2002.
[12]  J. Z. Wang, M. Guerrero, and X. A. Li, “How low is the α/β ratio for prostate cancer?” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 1, pp. 194–203, 2003.
[13]  H. Lukka, C. Hayter, J. A. Julian et al., “Randomized trial comparing two fractionation schedules for patients with localized prostate cancer,” Journal of Clinical Oncology, vol. 23, no. 25, pp. 6132–6138, 2005.
[14]  A. Pollack, A. L. Hanlon, E. M. Horwitz et al., “Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 2, pp. 518–526, 2006.
[15]  A. Pollack, G. Walker, and M. Buyyounouski, “Five year results of a randomized external beam radiotherapy hypofractionation trial for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 81, p. S1, 2011.
[16]  E. E. Yeoh, R. J. Botten, J. Butters, A. C. Di Matteo, R. H. Holloway, and J. Fowler, “Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial,” International Journal of Radiation Oncology, Biology, Physics, vol. 81, pp. 1271–1278, 2010.
[17]  J. H. Coote, J. P. Wylie, R. A. Cowan, J. P. Logue, R. Swindell, and J. E. Livsey, “Hypofractionated intensity-modulated radiotherapy for carcinoma of the prostate: analysis of toxicity,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 4, pp. 1121–1127, 2009.
[18]  J. M. Martin, T. Rosewall, A. Bayley et al., “Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 4, pp. 1084–1089, 2007.
[19]  D. Dearnaley, I. Syndikus, G. Sumo et al., “Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial,” The Lancet Oncology, vol. 13, no. 1, pp. 43–54, 2012.
[20]  G. Arcangeli, B. Saracino, S. Gomellini et al., “A Prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 1, pp. 11–18, 2010.
[21]  D. Norkus, A. Miller, J. Kurtinaitis et al., “A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external-beam radiotherapy for localized prostate adenocarcinoma: AAAAA report on acute toxicity,” Strahlentherapie und Onkologie, vol. 185, no. 11, pp. 715–721, 2009.
[22]  D. Norkus, A. Miller, A. Plieskiene, E. Janulionis, and K. P. Valuckas, “A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional conformal external-beam radiotherapy for localized prostate adenocarcinoma: a report on the first-year biochemical response,” Medicina, vol. 45, no. 6, pp. 469–475, 2009.
[23]  G. Soete, S. Arcangeli, G. De Meerleer et al., “Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: report on acute toxicity,” Radiotherapy and Oncology, vol. 80, no. 1, pp. 78–81, 2006.
[24]  M. A. Ritter, J. D. Forman, P. A. Kupelian, et al., “A phase I/II trial of increasingly hypofractionated radiation therapy for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 75, pp. S80–S81, 2009.
[25]  C. Menkarios, T. Vigneault, N. Brochet et al., “Toxicity report of once weekly radiation therapy for low-risk prostate adenocarcinoma: preliminary results of a phase I/II trial,” Radiation Oncology, vol. 6, no. 1, article 112, 2011.
[26]  D. J. Brenner and E. J. Hall, “Fractionation and protraction for radiotherapy of prostate carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 43, no. 5, pp. 1095–1101, 1999.
[27]  G. M. Duchess and L. J. Peters, “What is the α/β ratio for prostate cancer? Rationale for hypofractionated high-dose-rate brachytherapy,” International Journal of Radiation Oncology Biology Physics, vol. 44, no. 4, pp. 747–748, 1999.
[28]  J. Fowler, R. Chappell, and M. Ritter, “Is α/β for prostate tumors really low?” International Journal of Radiation Oncology Biology Physics, vol. 50, no. 4, pp. 1021–1031, 2001.
[29]  M. Ritter, “Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer,” Seminars in Radiation Oncology, vol. 18, no. 4, pp. 249–256, 2008.
[30]  M. Ritter, J. Forman, P. Kupelian, C. Lawton, and D. Petereit, “Hypofractionation for prostate cancer,” Cancer Journal, vol. 15, no. 1, pp. 1–6, 2009.
[31]  M. Carlone, D. Wilkins, B. Nyiri, and P. Raaphorst, “Comparison of α/β estimates from homogeneous (individual) and heterogeneous (population) tumor control models for early stage prostate cancer,” Medical Physics, vol. 30, no. 10, pp. 2832–2848, 2003.
[32]  A. E. Nahum, B. Movsas, E. M. Horwitz, C. C. Stobbe, and J. D. Chapman, “Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the α/β ratio,” International Journal of Radiation Oncology Biology Physics, vol. 57, no. 2, pp. 391–401, 2003.
[33]  J. F. Fowler, M. A. Ritter, J. D. Fenwick, and R. J. Chappell, “How low is the α/β ratio for prostate cancer? In regard to Wang et al., IJROBP 2003;55:194–203,” International Journal of Radiation Oncology Biology Physics, vol. 57, no. 2, pp. 593–595, 2003.
[34]  S. G. Williams, J. M. G. Taylor, N. Liu et al., “Use of individual fraction size data from 3756 patients to directly determine the α/β ratio of prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 1, pp. 24–33, 2007.
[35]  R. Miralbell, S. A. Roberts, E. Zubizarreta, and J. H. Hendry, “Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven International Institutional Datasets: α/β?=?1.4 (0.9–2.2) Gy,” International Journal of Radiation Oncology, Biology, Physics, vol. 82, no. 1, pp. e17–e24, 2012.
[36]  E. J. Hall and D. J. Brenner, “The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 2, pp. 381–385, 1993.
[37]  C. Park, L. Papiez, S. Zhang, M. Story, and R. D. Timmerman, “Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 847–852, 2008.
[38]  J. P. Kirkpatrick, J. J. Meyer, and L. B. Marks, “The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery,” Seminars in Radiation Oncology, vol. 18, no. 4, pp. 240–243, 2008.
[39]  R. W. Lloyd-Davies, C. D. Collins, and A. V. Swan, “Carcinoma of prostate treated by radical external beam radiotherapy using hypofractionation. Twenty-two years' experience (1962–1984),” Urology, vol. 36, no. 2, pp. 107–111, 1990.
[40]  C. D. Collins, R. W. Lloyd-Davies, and A. V. Swan, “Radical external beam radiotherapy for localised carcinoma of the prostate using a hypofractionation technique,” Clinical Oncology, vol. 3, no. 3, pp. 127–132, 1991.
[41]  T. Akimoto, H. Muramatsu, M. Takahashi et al., “Rectal bleeding after hypofractionated radiotherapy for prostate cancer: correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 4, pp. 1033–1039, 2004.
[42]  M. Barnes, H. Pass, and A. DeLuca, “Response of the mediastinal and thoracic viscera of the dog to intraoperative radiation therapy (IORT),” International Journal of Radiation Oncology Biology Physics, vol. 13, no. 3, pp. 371–378, 1987.
[43]  G. Bolzicco, M. S. Favretto, E. Scremin, C. Tambone, A. Tasca, and R. Guglielmi, “Image-guided stereotactic body radiation therapy for clinically localized prostate cancer: preliminary clinical results,” Technology in Cancer Research and Treatment, vol. 9, no. 5, pp. 473–477, 2010.
[44]  D. E. Freeman and C. R. King, “Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes,” Radiation Oncology, vol. 6, no. 1, article 3, 2011.
[45]  J. L. Friedland, D. E. Freeman, M. E. Masterson-McGary, and D. M. Spellberg, “Stereotactic body radiotherapy: an emerging treatment approach for localized prostate cancer,” Technology in Cancer Research and Treatment, vol. 8, no. 5, pp. 387–392, 2009.
[46]  S. Jabbari, V. K. Weinberg, T. Kaprealian et al., “Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response,” International Journal of Radiation Oncology, Biology, Physics, vol. 82, pp. 228–234, 2010.
[47]  P. A. Kupelian, V. V. Thakkar, D. Khuntia, C. A. Reddy, E. A. Klein, and A. Mahadevan, “Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: long-term outcomes,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 5, pp. 1463–1468, 2005.
[48]  P. A. Kupelian, T. R. Willoughby, C. A. Reddy, E. A. Klein, and A. Mahadevan, “Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 5, pp. 1424–1430, 2007.
[49]  N. Rene, S. Faria, F. Cury et al., “Hypofractionated radiotherapy for favorable risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 3, pp. 805–810, 2010.
[50]  A. J. Katz, M. Santoro, R. Ashley, F. Diblasio, and M. Witten, “Stereotactic body radiotherapy for organ-confined prostate cancer,” BMC Urology, vol. 10, article 1, 2010.
[51]  J. D. Cox, D. J. Grignon, R. S. Kaplan, J. T. Parsons, and P. F. Schellhammer, “Consensus statement: guidelines for PSA following radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 37, no. 5, pp. 1035–1041, 1997.
[52]  M. Roach III, G. Hanks, H. Thames Jr. et al., “Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 4, pp. 965–974, 2006.
[53]  B. L. Madsen, R. A. Hsi, H. T. Pham, J. F. Fowler, L. Esagui, and J. Corman, “Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results,” International Journal of Radiation Oncology Biology Physics, vol. 67, no. 4, pp. 1099–1105, 2007.
[54]  H. T. Pham, G. Song, K. Badiozamani, et al., “Five-year outcome of stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP) for patients with low-risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 78, p. S58, 2010.
[55]  C. I. Tang, D. A. Loblaw, P. Cheung et al., “Phase I/II study of a five-fraction hypofractionated accelerated radiotherapy treatment for low-risk localised prostate cancer: early results of pHART3,” Clinical Oncology, vol. 20, no. 10, pp. 729–737, 2008.
[56]  C. R. King, J. D. Brooks, H. Gill, T. Pawlicki, C. Cotrutz, and J. C. Presti, “Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 4, pp. 1043–1048, 2009.
[57]  C. R. King, J. D. Brooks, H. Gill, and J. C. Presti Jr., “Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 82, no. 2, pp. 877–882, 2012.
[58]  S. M. McBride, D. S. Wong, J. J. Dombrowski et al., “Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial,” Cancer, vol. 118, no. 15, pp. 3681–3690, 2012.
[59]  T. P. Boike, Y. Lotan, L. C. Cho et al., “Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 15, pp. 2020–2026, 2011.
[60]  A. Pollack, Five Year Results of a Randomized External Beam Radiotherapy Hypofractionation Trial for Prostate Cancer-(Pleneary Session), ASTRO, Miami, Fla, USA, 2011.
[61]  E. E. Yeoh, R. H. Holloway, R. J. Fraser et al., “Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial,” International Journal of Radiation Oncology Biology Physics, vol. 66, no. 4, pp. 1072–1083, 2006.
[62]  L. C. Cho, V. Fonteyne, W. DeNeve, et al., “Stereotactic body radiotherapy,” in Technical Basis of Radiation Therapy: Practical Clinical Applications, S. Levitt, J. Purdy, C. Perez, and P. Poortmans, Eds., p. 363, Springer, Heidelberg, Germany, 2012.
[63]  B. D. Kavanagh, R. Timmerman, and J. L. Meyer, “The expanding roles of stereotactic body radiation therapy and oligofractionation: toward a new practice of radiotherapy,” Frontiers of Radiation Therapy and Oncology, vol. 43, pp. 370–381, 2011.
[64]  A. J. Katz, M. Santoro, F. DiBlasio, et al., “Stereotactic body radiation therapy for low, intermediate, and high-risk prostate cancer: disease control and quality of life,” International Journal of Radiation Oncology Biology Physics, vol. 81, p. S100, 2011.
[65]  Y. Lotan, J. Stanfield, L. C. Cho et al., “Efficacy of high dose per fraction radiation for implanted human prostate cancer in a nude mouse model,” Journal of Urology, vol. 175, no. 5, pp. 1932–1936, 2006.
[66]  RTOG 0938, http://www.rtog.org/ClinicalTrials/ProtocolTable.aspx.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133