全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psyche  2013 

Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia

DOI: 10.1155/2013/936341

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales), Spiroplasma (Firmicutes: Entomoplasmatales), and relatives of Asaia (Alphaproteobacteria: Rhodospirillales)—at different infection frequencies (at the ant species level: 22.1%, 28.4%, and 14.7%, resp.) and relative abundances within bacterial communities (1.0%–99.9%). Spiroplasma was particularly enriched in the ant genus Polyrhachis, while Asaia relatives were most prevalent in arboreal ants of the genus Pseudomyrmex. While Wolbachia and Spiroplasma have been surveyed in ants before, Asaia, an acetic acid bacterium capable of fixing atmospheric nitrogen, has received much less attention. Due to sporadic prevalence across all ant taxa investigated, we hypothesize facultative associations for all three bacterial genera. Infection patterns are discussed in relation to potential adaptation of specific bacteria in certain ant groups. 1. Introduction Recent studies have shown that insects are associated with a broad range of unrelated microbial taxa [1, 2]. These interactions shape the ecology and evolution of hosts and bacterial symbionts and often heavily impact host biology [3, 4]. Congruent evolutionary histories between some symbiotic partners show the likely obligate nature of this relationship [5], while other associations occur sporadically and can vary both spatially and temporally [6]. Bacterial endosymbionts sometimes inhabit specialized host cells or structures [7, 8] and might even share metabolic pathways with their hosts [9], while others occur loosely in unspecific tissues or hemolymph [10]. Microbes associated with insects are extremely diverse and span-wide taxonomic groups, even within individual hosts. One of the best-characterized endosymbiont groups is comprised of insect-associated bacteria that increase the nutritive value of their hosts’ diets. These bacteria are often highly specialized and coevolved associates, playing particularly important roles in insects with nutritionally limited or deficient diets. Some well-known examples of such

References

[1]  H. Koch, D. P. Abrol, J. Li, and P. Schmid-Hempel, “Diversity of evolutionary patterns of bacterial gut associates of corbiculate bees,” Molecular Ecology, vol. 22, no. 7, pp. 2028–2044, 2013.
[2]  R. J. Dillon and V. M. Dillon, “The Gut bacteria of insects: nonpathogenic interactions,” Annual Review of Entomology, vol. 49, pp. 71–92, 2004.
[3]  S. Fraune and T. C. G. Bosch, “Why bacteria matter in animal development and evolution,” BioEssays, vol. 32, no. 7, pp. 571–580, 2010.
[4]  H. Feldhaar, “Bacterial symbionts as mediators of ecologically important traits of insect hosts,” Ecological Entomology, vol. 36, no. 5, pp. 533–543, 2011.
[5]  J. M. Urban and J. R. Cryan, “Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea),” BMC Evolutionary Biology, vol. 12, article 87, 2012.
[6]  H. Toju and T. Fukatsu, “Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants,” Molecular Ecology, vol. 20, no. 4, pp. 853–868, 2011.
[7]  M. Kaltenpoth, “Actinobacteria as mutualists: general healthcare for insects?” Trends in Microbiology, vol. 17, no. 12, pp. 529–535, 2009.
[8]  N. A. Moran, J. P. McCutcheon, and A. Nakabachi, “Genomics and evolution of heritable bacterial symbionts,” Annual Review of Genetics, vol. 42, pp. 165–190, 2008.
[9]  J. P. McCutcheon and C. D. Von Dohlen, “An interdependent metabolic patchwork in the nested symbiosis of mealybugs,” Current Biology, vol. 21, no. 16, pp. 1366–1372, 2011.
[10]  C. B. Montllor, A. Maxmen, and A. H. Purcell, “Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress,” Ecological Entomology, vol. 27, no. 2, pp. 189–195, 2002.
[11]  A. E. Douglas, “The nutritional physiology of aphids,” Advances in Insect Physiology, vol. 31, pp. 73–140, 2003.
[12]  J. J. Wernegreen, S. N. Kauppinen, S. G. Brady, and P. S. Ward, “One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects,” BMC Evolutionary Biology, vol. 9, no. 1, article 292, 2009.
[13]  H. Feldhaar, J. Straka, M. Krischke et al., “Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia,” BMC Biology, vol. 5, article 48, 2007.
[14]  A. A. Pinto-Tomás, M. A. Anderson, G. Suen et al., “Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants,” Science, vol. 326, no. 5956, pp. 1120–1123, 2009.
[15]  R. Pais, C. Lohs, Y. Wu, J. Wang, and S. Aksoy, “The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly,” Applied and Environmental Microbiology, vol. 74, no. 19, pp. 5965–5974, 2008.
[16]  J. A. Breznak, “Intestinal microbiota of termites and other xylophagous insects,” Annual Review of Microbiology, vol. 36, pp. 323–343, 1982.
[17]  J. A. Breznak, W. J. Brill, J. W. Mertins, and H. C. Coppel, “Nitrogen fixation in termites,” Nature, vol. 244, no. 5418, pp. 577–579, 1973.
[18]  J. A. Russell, C. S. Moreau, B. Goldman-Huertas, M. Fujiwara, D. J. Lohman, and N. E. Pierce, “Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21236–21241, 2009.
[19]  K. E. Anderson, J. A. Russell, C. S. Moreau et al., “Highly similar microbial communities are shared among related and trophically similar ant species,” Molecular Ecology, vol. 21, pp. 2282–2296, 2012.
[20]  D. W. Davidson, S. C. Cook, R. R. Snelling, and T. H. Chua, “Explaining the abundance of ants in lowland tropical rainforest canopies,” Science, vol. 300, no. 5621, pp. 969–972, 2003.
[21]  J. C. Brownlie and K. N. Johnson, “Symbiont-mediated protection in insect hosts,” Trends in Microbiology, vol. 17, no. 8, pp. 348–354, 2009.
[22]  J. Jaenike, R. Unckless, S. N. Cockburn, L. M. Boelio, and S. J. Perlman, “Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont,” Science, vol. 329, no. 5988, pp. 212–215, 2012.
[23]  K. M. Oliver, J. A. Russell, N. A. Morant, and M. S. Hunter, “Facultative bacterial symbionts in aphids confer resistance to parasitic wasps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 1803–1807, 2003.
[24]  C. R. Currie, J. A. Scott, R. C. Summerbell, and D. Malloch, “Fungus-growing ants use antibiotic-producing bacteria to control garden parasites,” Nature, vol. 398, pp. 701–704, 1999.
[25]  M. Kaltenpoth, W. G?ttler, G. Herzner, and E. Strohm, “Symbiotic bacteria protect wasp larvae from fungal infestation,” Current Biology, vol. 15, no. 5, pp. 475–479, 2005.
[26]  H. E. Dunbar, A. C. C. Wilson, N. R. Ferguson, and N. A. Moran, “Aphid thermal tolerance is governed by a point mutation in bacterial symbionts,” PLoS Biology, vol. 5, no. 5, pp. 1006–1015, 2007.
[27]  T. Tsuchida, R. Koga, S. Matsumoto, and T. Fukatsu, “Interspecific symbiont transfection confers a novel ecological trait to the recipient insect,” Biology Letters, vol. 7, no. 2, pp. 245–248, 2011.
[28]  R. Stouthamer, J. A. J. Breeuwer, and G. D. D. Hurst, “Wolbachia pipientis: microbial manipulator of arthropod reproduction,” Annual Review of Microbiology, vol. 53, pp. 71–102, 1999.
[29]  L. M. Hedges, J. C. Brownlie, S. L. O'Neill, and K. N. Johnson, “Wolbachia and virus protection in insects,” Science, vol. 322, no. 5902, p. 702, 2008.
[30]  K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, “How many species are infected with Wolbachia?—a statistical analysis of current data,” FEMS Microbiology Letters, vol. 281, no. 2, pp. 215–220, 2008.
[31]  J. A. Russell, C. F. Funaro, Y. M. Giraldo et al., “A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review,” PLoS ONE, vol. 7, no. 12, Article ID e51027, 2012.
[32]  O. Duron, D. Bouchon, S. Boutin et al., “The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone,” BMC Biology, vol. 6, article 27, 2008.
[33]  D. L. Williamson and D. F. Poulson, “Sex ratio organisms (Spiroplasmas) of Drosophila,” in The Mycoplasmas III: Plant and Insect Mycoplasmas, R. F. Whitcomb and J. G. Tully, Eds., pp. 175–208, Academic Press, New York, NY, USA, 1979.
[34]  J. M. Bové, “Spiroplasmas: infectious agents of plants, arthropods and vertebrates,” Wiener Klinische Wochenschrift, vol. 109, no. 14-15, pp. 604–612, 1997.
[35]  M. C. Tinsley and M. E. N. Majerus, “A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae),” Parasitology, vol. 132, no. 6, pp. 757–765, 2006.
[36]  A. Dobson, K. D. Lafferty, A. M. Kuris, R. F. Hechinger, and W. Jetz, “Homage to Linnaeus: how many parasites? How many hosts?” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 11482–11489, 2008.
[37]  S. T. Kelley and S. Dobler, “Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae),” Genetica, vol. 139, no. 5, pp. 541–550, 2011.
[38]  H. D. Ishak, R. Plowes, R. Sen et al., “Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing,” Microbial Ecology, vol. 61, no. 4, pp. 821–831, 2011.
[39]  S. Kautz, B. E. R. Rubin, J. A. Russell, and C. S. Moreau, “Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity,” Applied and Environmental Microbiology, vol. 79, no. 2, pp. 525–534, 2013.
[40]  S. E. Dowd, T. R. Callaway, R. D. Wolcott et al., “Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP),” BMC Microbiology, vol. 8, article 125, 2008.
[41]  J. G. Caporaso, J. Kuczynski, J. Stombaugh et al., “QIIME allows analysis of high-throughput community sequencing data,” Nature Methods, vol. 7, no. 5, pp. 335–336, 2010.
[42]  C. Quince, A. Lanzen, R. J. Davenport, and P. J. Turnbaugh, “Removing noise from pyrosequenced amplicons,” BMC Bioinformatics, vol. 12, article 38, 2011.
[43]  R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioinformatics, vol. 26, no. 19, pp. 2460–2461, 2010.
[44]  J. R. Cole, Q. Wang, E. Cardenas et al., “The Ribosomal database project: improved alignments and new tools for rRNA analysis,” Nucleic Acids Research, vol. 37, no. 1, pp. D141–D145, 2009.
[45]  T. Z. DeSantis, P. Hugenholtz, N. Larsen et al., “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5069–5072, 2006.
[46]  A. J. Drummond, B. Ashton, S. Buxton et al., “Geneious v5. 4,” 2011, http://www.geneious.com/.
[47]  A. Stamatakis, P. Hoover, and J. Rougemont, “A rapid bootstrap algorithm for the RAxML web servers,” Systematic Biology, vol. 57, no. 5, pp. 758–771, 2008.
[48]  M. A. Miller, M. T. Holder, R. Vos et al., “The CIPRES portals,” http://www.phylo.org/sub_sections/portal.
[49]  I. Letunic and P. Bork, “Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy,” Nucleic Acids Research, vol. 39, no. 2, pp. W475–W478, 2011.
[50]  T. Wenseleers, F. Ito, S. van Borm, R. Huybrechts, F. Volckaert, and J. Billen, “Widespread occurrence of the micro-organism Wolbachia in ants,” Proceedings of the Royal Society B, vol. 265, no. 1404, pp. 1447–1452, 1998.
[51]  J. A. Russell, “The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts,” Myrmecological News, vol. 16, pp. 7–23, 2012.
[52]  W. Arthofer, M. Riegler, D. Schneider, M. Krammer, W. J. Miller, and C. Stauffer, “Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae),” Molecular Ecology, vol. 18, no. 18, pp. 3816–3830, 2009.
[53]  J. A. Russell, B. Goldman-Huertas, C. S. Moreau et al., “Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies,” Evolution, vol. 63, no. 3, pp. 624–640, 2009.
[54]  T. Wenseleers, L. Sundstr?m, and J. Billen, “Deleterious Wolbachia in the ant Formica truncorum,” Proceedings of the Royal Society B, vol. 269, no. 1491, pp. 623–629, 2002.
[55]  F. Vavre, F. Fleury, J. Varaldi, P. Fouillet, and M. Boulétreau, “Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences,” Evolution, vol. 54, no. 1, pp. 191–200, 2000.
[56]  J. Heinze, “The demise of the standard ant (Hymenoptera: Formicidae),” Myrmecological News, vol. 11, pp. 11–20, 2008.
[57]  S. Kautz, S. U. Pauls, D. J. Ballhorn, H. T. Lumbsch, and M. Heil, “Polygynous supercolonies of the acacia-ant Pseudomyrmex peperi, an inferior colony founder,” Molecular Ecology, vol. 18, no. 24, pp. 5180–5194, 2009.
[58]  S. Kautz, D. J. Ballhorn, J. Kroiss et al., “Host plant use by competing acacia-ants: mutualists monopolize while parasites share hosts,” PLoS ONE, vol. 7, no. 5, Article ID e37691, 2012.
[59]  J. Fletcher, G. A. Schultz, R. E. Davis, C. E. Eastman, and R. M. Goodman, “Brittle root disease of horseradish-evidence for an etiological role of Spiroplasma citri,” Phytopathology, vol. 71, pp. 1073–1080, 1981.
[60]  C. F. Funaro, D. J. C. Kronauer, C. S. Moreau, B. Goldman-Huertas, N. E. Pierce, and J. A. Russell, “Army ants harbor a host-specific clade of Entomoplasmatales bacteria,” Applied and Environmental Microbiology, vol. 77, no. 1, pp. 346–350, 2011.
[61]  D. J. C. Kronauer, “Recent advances in army ant biology (Hymenoptera: Formicidae),” Myrmecological News, vol. 12, pp. 51–65, 2009.
[62]  F. Thiaucourt and G. B?lske, “Contagious caprine pleuropneumonia and other pulmonary mycoplasmoses of sheep and goats,” OIE Revue Scientifique et Technique, vol. 15, no. 4, pp. 1397–1414, 1996.
[63]  T. Fukatsu, T. Tsuchida, N. Nikoh, and R. Koga, “Spiroplasma Symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera),” Applied and Environmental Microbiology, vol. 67, no. 3, pp. 1284–1291, 2001.
[64]  T. S. Haselkorn, T. A. Markow, and N. A. Moran, “Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila,” Molecular Ecology, vol. 18, no. 6, pp. 1294–1305, 2009.
[65]  J. G. Lundgren, R. M. Lehman, and J. Chee-Sanford, “Physiology, biochemistry, and topology: bacterial communities within digestive tracts of ground beetles (Coleoptera: Carabidae),” Annals of the Entomological Society of America, vol. 100, no. 2, pp. 275–282, 2007.
[66]  I. Meeus, V. Vercruysse, and G. Smagghe, “Molecular detection of Spiroplasma apis and Spiroplasma melliferum in bees,” Journal of Invertebrate Pathology, vol. 109, no. 1, pp. 172–174, 2012.
[67]  S. van Borm, J. Billen, and J. J. Boomsma, “The diversity of microorganisms associated with Acromyrmex leafcutter ants,” BMC Evolutionary Biology, vol. 2, article 9, 2002.
[68]  J. Wedincamp, F. E. French, R. F. Whitcomb, and R. B. Heneger, “Laboratory infection and release of Spiroplasma (Entomoplasmatales: Spiroplasmataceae) from horse flies (Diptera: Tabanidae),” Journal of Entomological Science, vol. 32, no. 4, pp. 398–402, 1997.
[69]  M. A. Ebbert and L. R. Nault, “Improved overwintering ability in Dalbulus maidis (Homoptera: Cicadellidae) vectors infected with Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae),” Environmental Entomology, vol. 23, no. 3, pp. 634–644, 1994.
[70]  F. M. Jiggins, G. D. D. Hurst, C. D. Jiggins, J. H. G. V. D. Schulenburg, and M. E. N. Majerus, “The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium,” Parasitology, vol. 120, no. 5, pp. 439–446, 2000.
[71]  J. H. G. V. D. Schulenburg, G. D. D. Hurst, D. Tetzlaff, G. E. Booth, I. A. Zakharov, and M. E. N. Majerus, “History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis,” Genetics, vol. 160, no. 3, pp. 1075–1086, 2002.
[72]  S. Kautz, H. T. Lumbsch, P. S. Ward, and M. Heil, “How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners,” Evolution, vol. 63, no. 4, pp. 839–853, 2009.
[73]  N. Samaddar, A. Paul, S. Chakravorty et al., “Nitrogen fixation in Asaia sp. (Family Acetobacteraceae),” Current Microbiology, vol. 63, no. 2, pp. 226–231, 2011.
[74]  Y. Ano, H. Toyama, O. Adachi, and K. Matsushita, “Energy metabolism of a unique acetic acid bacterium, Asaia bogorensis, that lacks ethanol oxidation activity,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 4, pp. 989–997, 2008.
[75]  V. G. Martinson, B. N. Danforth, R. L. Minckley, O. Rueppell, S. Tingek, and N. A. Moran, “A simple and distinctive microbiota associated with honey bees and bumble bees,” Molecular Ecology, vol. 20, no. 3, pp. 619–628, 2011.
[76]  N. A. Moran, A. K. Hansen, J. E. Powell, and Z. L. Sabree, “Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees,” PLoS ONE, vol. 7, no. 4, Article ID e36393, 2012.
[77]  E. Crotti, C. Damiani, M. Pajoro et al., “Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders,” Environmental Microbiology, vol. 11, no. 12, pp. 3252–3264, 2009.
[78]  C. R. Cox and M. S. Gilmore, “Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis,” Infection and Immunity, vol. 75, no. 4, pp. 1565–1576, 2007.
[79]  M. Marzorati, A. Alma, L. Sacchi et al., “A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence Dorée in Vitis vinifera,” Applied and Environmental Microbiology, vol. 72, no. 2, pp. 1467–1475, 2006.
[80]  N. J. Ashbolt and P. A. Inkerman, “Acetic acid bacterial biota of the pink sugar cane mealybug, Saccharococcus sacchari, and its environs,” Applied and Environmental Microbiology, vol. 56, no. 3, pp. 707–712, 1990.
[81]  E. Crotti, A. Rizzi, B. Chouaia et al., “Acetic acid bacteria, newly emerging symbionts of insects,” Applied and Environmental Microbiology, vol. 76, no. 21, pp. 6963–6970, 2010.
[82]  J. Ryu, S. Kim, H. Lee et al., “Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila,” Science, vol. 319, no. 5864, pp. 777–782, 2008.
[83]  S. Stoll, J. Gadau, R. Gross, and H. Feldhaar, “Bacterial microbiota associated with ants of the genus Tetraponera,” Biological Journal of the Linnean Society, vol. 90, no. 3, pp. 399–412, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133