全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psyche  2013 

Evaluating Alpha and Beta Taxonomy in Ant-Nest Beetles (Coleoptera, Carabidae, Paussini)

DOI: 10.1155/2013/736939

Full-Text   Cite this paper   Add to My Lib

Abstract:

We evaluated completeness, accuracy, and historical trend of the taxonomic knowledge on the myrmecophilous ground beetle tribe Paussini (Coleoptera, Carabidae, Paussinae). Accumulation curves for valid names and synonyms of species, subgenera, and genera were modelled using logistic functions. Analyses of trends in synonymies suggest that few currently accepted taxa will be recognized to be synonymous in the future. This may indicate that Paussini are a taxonomically relatively stable tribe of carabid beetles. However, this result might also be due to the lack of recent taxonomic work in some biogeographical regions. 1. Introduction Arthropods are the most diversified animal group [1, 2]. Although it is widely acknowledged that only a small fraction of the extant arthropod species has been described, the magnitude of the so-called Linnean shortfall (i.e., the discrepancy between the number of described species and the number of living species) is a matter of discussion [2]. Also for relatively well-investigated arthropod groups, there is few information about the quality of the taxonomic knowledge [3, 4]. The most basic question is to establish how complete and accurate the taxonomic status of a given group is. With the word completeness we refer here to the problem whether the species list of a given group can be considered fairly complete or if there are still many species to describe. A completely known group is one for which there is no longer a need of an alpha taxonomic work (the discovering and naming of new species [5]). With accuracy we refer to taxonomic stability. An accurately known group is one for which there is no more need of a beta taxonomic work (the study of the relationships between the already described taxa, through systematic revisional work of higher taxa [5]). Because it is not rare that species are redundantly described under different names (i.e., synonyms), a group is known with accuracy when no relevant taxonomic change is expected. Although the two aspects tend to be interrelated, they are not necessarily redundant, because revisional works are much rarer than descriptions of new taxa. In this paper, we evaluated the completeness and accuracy of the taxonomic knowledge about a group of myrmecophilous beetles, the tribe Paussini (“ant-nest beetles”) of the family Carabidae (Coleoptera, Adephaga, Paussinae), at a global level. All Paussini are highly specialized social parasites, depending on ants (mainly associated with Myrmicinae and Formicinae) during any stage of their development [6–9]. Adults prey on ants and their

References

[1]  K. J. Gaston, “The magnitude of global insect species richness,” Conservation Biology, vol. 5, no. 3, pp. 283–296, 1991.
[2]  R. J. Ladle and R. J. Whittaker, Conservation Biogeography, Springer, West Sussex, UK, 2011.
[3]  A. Baselga, J. Hortal, A. Jiménez-Valverde, J. F. Gómez, and J. M. Lobo, “Which leaf beetles have not yet been described? Determinants of the description of Western Palaearctic Aphthona species (Coleoptera: Chrysomelidae),” Biodiversity and Conservation, vol. 16, no. 5, pp. 1409–1421, 2007.
[4]  J. Hortal, A. Jiménez-Valverde, J. F. Gómez, J. M. Lobo, and A. Baselga, “Historical bias in biodiversity inventories affects the observed environmental niche of the species,” Oikos, vol. 117, no. 6, pp. 847–858, 2008.
[5]  E. Mayr, Principles of Systematic Zoology, McGraw-Hill, New York, NY, USA, 1969.
[6]  A. Di Giulio, S. Fattorini, A. Kaupp, A. V. Taglianti, and P. Nagel, “Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters,” Systematic Entomology, vol. 28, no. 4, pp. 509–537, 2003.
[7]  A. Di Giulio and W. Moore, “The first-instar larva of the genus Arthropterus (Coleoptera:Carabidae: Paussinae): implications for evolution of myrmecophily and phylogenetic relationships within the subfamily,” Invertebrate Systematics, vol. 18, no. 2, pp. 101–115, 2004.
[8]  A. Di Giulio, “Fine morphology of the myrmecophilous larva of Paussus kannegieteri (Coleoptera: Carabidae: Paussinae: Paussini),” Zootaxa, no. 1741, pp. 37–50, 2008.
[9]  W. Moore, X. B. Song, and A. di Giulio, “The larva of Eustra (Coleoptera, Paussinae, Ozaenini): a facultative associate of ants,” ZooKeys, vol. 90, pp. 63–82, 2011.
[10]  C. Escherich, “Zur naturgeschichte von Paussus favieri Fairm,” Verhandlungen der Zoologisch-Botanischen Gesellschaft, vol. 49, pp. 278–283, 1899.
[11]  G. Le Masne, “Recherches sur la biologie des animaux myrmécophiles IV: observations sur le comportement de Paussus favieri Fairm, h?te de la fourmi Pheidole pallidula Nyl.,” Annales de la Faculté des Sciences de Marseille, vol. 31, pp. 111–130, 1961.
[12]  G. Le Masne, “Recherches sur la biologie des animaux myrmécophiles I: L'adoption des Paussus favieri Fairm, par une nouvelle societe de Pheidole pallidula Nyl.,” Comptes Rendus Hebdomadaires des Scéances de L'Academie des Scéances, vol. 253, pp. 1621–1623, 1961.
[13]  S. F. Geiselhardt, K. Peschke, and P. Nagel, “A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings,” Naturwissenschaften, vol. 94, no. 11, pp. 871–894, 2007.
[14]  A. di Giulio, E. Maurizi, P. Hlavá?, and W. Moore, “The long-awaited first instar larva of Paussus favieri (Coleoptera: Carabidae: Paussini),” European Journal of Entomology, vol. 108, no. 1, pp. 127–138, 2011.
[15]  E. Maurizi, S. Fattorini, and A. Di Giulio, “Behavior of Paussus favieri (Coleoptera, Carabidae, Paussini), a myrmecophilous beetle associated with Pheidole pallidula (Hymenoptera, Formicidae),” Psyche, vol. 2012, Article ID 940315, 9 pages, 2012.
[16]  G. C. Steyskal, “Trend curves of the rate of species description in zoology,” Science, vol. 149, no. 3686, pp. 880–882, 1965.
[17]  R. A. Medellín and J. Soberón, “Predictions of mammal diversity on four land masses,” Conservation Biology, vol. 13, no. 1, pp. 143–149, 1999.
[18]  F. J. Cabrero-Sa?udo and J. M. Lobo, “Estimating the number of species not yet described and their characteristics: the case of Western Palaearctic dung beetle species (Coleoptera, Scarabaeoidea),” Biodiversity and Conservation, vol. 12, no. 1, pp. 147–166, 2003.
[19]  A. Baselga and F. Novoa, “Diversity of Chrysomelidae (Coleoptera) in Galicia, Northwest Spain: estimating the completeness of the regional inventory,” Biodiversity and Conservation, vol. 15, no. 1, pp. 205–230, 2006.
[20]  A. R. Solow and W. K. Smith, “On estimating the number of species from the discovery record,” Proceedings of the Royal Society B, vol. 272, no. 1560, pp. 285–287, 2005.
[21]  J. Alroy, “How many named species are valid?” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3706–3711, 2002.
[22]  S. Fattorini, E. Maurizi, and A. Di Giulio, “Tackling the taxonomic impediment: a global assessment for ant-nest beetle diversity (Coleoptera: Carabidae: Paussini),” Biological Journal of the Linnean Society, vol. 105, pp. 330–339, 2012.
[23]  W. Lorenz, A Systematic List of Extant Ground Beetles of the World (Coleoptera “Geadephaga”: Trachypachidae and Carabidae Incl. Paussinae, Cicindelinae, Rhysodinae), W. Lorenz, Tutzing, Germany, 2nd edition, 2005.
[24]  A. Baselga, J. M. Lobo, J. Hortal, A. Jiménez-Valverde, and J. F. Gómez, “Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms,” Journal of Zoological Systematics and Evolutionary Research, vol. 48, no. 1, pp. 40–49, 2010.
[25]  R. R. Sokal and J. Crovello, “The biological species concept: a critical evaluation,” The American Naturalist, vol. 104, pp. 127–153, 1970.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133