全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Age Differences in the Association of Severe Psychological Distress and Behavioral Factors with Heart Disease

DOI: 10.1155/2013/979623

Full-Text   Cite this paper   Add to My Lib

Abstract:

Few studies have examined the risk factors of serious psychological distress (SPD) and behavioral factors for heart disease separately stratified as young (18–44 years), middle aged (45–64 years), and elderly (65 years or older). A total of 3,540 adults with heart disease and 37,703 controls were selected from the 2005 California Health Interview Survey. Data were weighted to be representative and adjusted for potential undercoverage and nonresponse biases. Multiple logistic regression models were used to estimate the associations of the factors with heart disease at different ages. The prevalence of SPD was 8% in cases and 4% in controls, respectively. For young adults, SPD and higher federal poverty level (FPL) were associated with an increased risk of heart disease while for middle-aged adults, SPD, past smoking, lack of physical activity, obesity, male, and unemployment were associated with an increased risk of heart disease. In addition, SPD, past smoking, lack of physical activity, obesity, male, unemployment, White, and lower FPL were associated with an increased risk of heart disease in elderly. Our findings indicate that risk factors for heart disease vary across all ages. Intervention strategies that target risk reduction of heart disease may be tailored accordingly. 1. Introduction Cardiovascular disease (CVD) is the leading cause of death for adults in the world [1, 2]. Although the death rate for CVD has declined by 30.6% from 1998 to 2008, coronary heart disease (CHD) as the main component of CVD remains the leading cause of death in the United States (USA) for men and women and particularly is the single leading killer in women [3, 4]. In 2010, the age-adjusted prevalence of heart disease for adults was 11.7% among Whites, 10.9% among Blacks or African Americans, 8.1% among Hispanics or Latinos, and 7.2% among American Asians [5]. Approximately half men and one-third women aged 40 years or older were at a higher risk of developing CHD [6]. CHD accounts for more than 50% of all cardiovascular events for both sexes younger than 75 years of age [7]. The estimated direct and indirect costs of heart disease in 2008 were $190.3 billion [4]. Furthermore, approximately four of every ten individuals in the USA are predicted to have some form of CVD by 2030 [8]. Several risk factors have been linked to predispose individuals to develop heart disease, including gender, heredity, age, physical inactivity, smoking, obese status, high blood pressure, high cholesterol, abnormal blood lipid levels, low daily fruit and vegetable consumption, alcohol

References

[1]  A. D. Lopez, C. D. Mathers, M. Ezzati, et al., Eds., Global Burden of Disease and Risk Factors, Oxford University Press, New York, NY, USA, 2006.
[2]  C. J. L. Murray and A. D. Lopez, The Global Burden of Disease: A Comparative Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected To 2020, vol. 1, Harvard University Press, Cambridge, Mass, USA, 1996.
[3]  National Center for Health Statistics, Health, United States, 2005, with Chartbook on Trends in the Health of Americans, NCHS, Hyattsville, Md, USA, 2005.
[4]  V. L. Roger, A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, et al., “Heart disease and stroke statistics-2012 update: a report from the American Heart Association,” Circulation, vol. 125, pp. e2–e220, 2012.
[5]  J. S. Schiller, J. W. Lucas, B. W. Ward, et al., “Summary health statistics for U.S. adults: National Health Interview Survey, 2001,” Vital and Health Statistics, vol. 10, no. 252, 2012.
[6]  D. M. Lloyd-Jones, M. G. Larson, A. Beiser, and D. Levy, “Lifetime risk of developing coronary heart disease,” The Lancet, vol. 353, no. 9147, pp. 89–92, 1999.
[7]  T. Thom, W. Kannel, H. Silbershatz, and R. B. D'Agostino, “Cardiovascular diseases in the United States and prevention approaches,” in Hurst's the Heart, V. Fuster, R. W. Alexander, R. C. Schlant, R. A. O'Rourke, R. Roberts, and E. H. Sonnenblick, Eds., pp. 3–7, McGraw-Hill, New York, NY, USA, 10th edition, 2001.
[8]  P. A. Heidenreich, J. G. Trogdon, O. A. Khavjou et al., “Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association,” Circulation, vol. 123, no. 8, pp. 933–944, 2011.
[9]  A. Soni, Personal health behaviors for heart disease prevention among the U.S. adult civilian noninstitutionalized population, 2004. MEPS Statistical Brief No.165, Rockville, Md, USA, Agency for Healthcare Research and Quality, 2012, http://meps.ahrq.gov/mepsweb/data_files/publications/st165/stat165.pdf.
[10]  S. Yusuf, S. Hawken, S. Ounpuu, et al., “Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study,” The Lancet, vol. 364, no. 9438, pp. 937–952, 2004.
[11]  H. Baumeister, N. Hutter, and J. Bengel, “Psychological and pharmacological interventions for depression in patients with coronary artery disease,” Cochrane Database of Systematic Reviews, vol. 9, Article ID CD008012, 2011.
[12]  H. Baumeister, N. Hutter, J. Bengel, and M. H?rter, “Quality of life in medically ill persons with comorbid mental disorders: a systematic review and meta-analysis,” Psychotherapy and Psychosomatics, vol. 80, no. 5, pp. 275–286, 2011.
[13]  R. M. Carney, K. E. Freedland, M. W. Rich, L. J. Smith, and A. S. Jaffe, “Ventricular tachycardia and psychiatric depression in patients with coronary artery disease,” The American Journal of Medicine, vol. 95, no. 1, pp. 23–28, 1993.
[14]  R. Lampert, T. Joska, M. M. Burg, W. P. Batsford, C. A. McPherson, and D. Jain, “Emotional and physical precipitants of ventricular arrhythmia,” Circulation, vol. 106, no. 14, pp. 1800–1805, 2002.
[15]  H. Luukinen, P. Laippala, and H. V. Huikuri, “Depressive symptoms and the risk of sudden cardiac death among the elderly,” European Heart Journal, vol. 24, no. 22, pp. 2021–2026, 2003.
[16]  W. Whang, C. M. Albert, S. F. Sears Jr. et al., “Depression as a predictor for appropriate shocks among patients with implantable cardioverter-defibrillators: results from the Triggers of Ventricular Arrhythmias (TOVA) Study,” Journal of the American College of Cardiology, vol. 45, no. 7, pp. 1090–1095, 2005.
[17]  W. Whang, L. D. Kubzansky, I. Kawachi et al., “Depression and risk of sudden cardiac death and coronary heart disease in women: results from the Nurses' Health Study,” Journal of the American College of Cardiology, vol. 53, no. 11, pp. 950–958, 2009.
[18]  P. J. Tully, S. M. Cosh, and B. T. Baune, “A review of the affects of worry and generalized anxiety disorder upon cardiovascular health and coronary heart disease,” Psychology, Health & Medicine, 2013.
[19]  N. Kupper, J. Denollet, J. Widdershoven, and W. J. Kop, “Type D personality is associated with low cardiovascular reactivity to acute mental stress in heart failure patients,” International Journal of Psychophysiology, 2013.
[20]  S. A. Stansfeld, R. Fuhrer, M. J. Shipley, and M. G. Marmot, “Psychological distress as a risk factor for coronary heart disease in the Whitehall II Study,” International Journal of Epidemiology, vol. 31, no. 1, pp. 248–255, 2002.
[21]  A. Shupe, R. Tolliver, J. Hamilton, and D. Menefee, “Prevalence of severe psychological distress and its association with behavioral risk factors, quality of life indicators, and health outcomes: Colorado Behavioral Risk Factor Surveillance System,” Colorado Department of Public Health and Environment. Health Watch, No. 67, 2007, http://www.cdphe.state.co.us/hs/pubs/mentalHealth.pdf.
[22]  P. Schnohr, J. S. Jensen, H. Scharling, and B. G. Nordestgaard, “Coronary heart disease risk factors ranked by importance for the individual and community: a 21 year follow-up of 12000 men and women from the Copenhagen City Heart Study,” European Heart Journal, vol. 23, no. 8, pp. 620–626, 2002.
[23]  E. E. Davis and F. G. Huffman, “Differences in coronary heart disease risk markers among apparently healthy individuals of African ancestry,” Journal of the National Medical Association, vol. 99, no. 6, pp. 658–664, 2007.
[24]  Centers for Disease Control and Prevention (CDC), “Racial/ethnic and socioeconomic disparities in multiple risk factors for heart disease and stroke—United States, 2003,” Morbidity and Mortality Weekly Report, vol. 54, no. 5, pp. 113–117, 2005.
[25]  J. A. Swartz and A. J. Lurigio, “Screening for serious mental illness in populations with co-occurring substance use disorders: performance of the K6 scale,” Journal of Substance Abuse Treatment, vol. 31, no. 3, pp. 287–296, 2006.
[26]  R. F. Baggaley, R. Ganaba, V. Filippi et al., “Detecting depression after pregnancy: the validity of the K10 and K6 in Burkina Faso,” Tropical Medicine and International Health, vol. 12, no. 10, pp. 1225–1229, 2007.
[27]  R. C. Kessler, P. R. Barker, L. J. Colpe et al., “Screening for serious mental illness in the general population,” Archives of General Psychiatry, vol. 60, no. 2, pp. 184–189, 2003.
[28]  J. O. Elliott, B. Lu, J. L. Moore, J. W. McAuley, and L. Long, “Exercise, diet, health behaviors, and risk factors among persons with epilepsy based on the California Health Interview Survey, 2005,” Epilepsy and Behavior, vol. 13, no. 2, pp. 307–315, 2008.
[29]  A. W. Thompson, R. Kobau, R. Park, and D. Grant, “Epilepsy care and mental health care for people with epilepsy: California Health Interview Survey, 2005,” Preventing Chronic Disease, vol. 9, Article ID 110140, 2012.
[30]  California Health Interview Survey. CHIS, 2005 Methodology Series: Report 2—Data Collection Methods, UCLA Center for Health Policy Research, Los Angeles, Calif, USA, 2007.
[31]  R. C. Kessler, G. Andrews, L. J. Colpe et al., “Short screening scales to monitor population prevalences and trends in non-specific psychological distress,” Psychological Medicine, vol. 32, no. 6, pp. 959–976, 2002.
[32]  World Health Organization (WHO), Obesity: Preventing and Managing the Global Epidemic, World Health Organization (WHO), Geneva, Switzerland, 1998.
[33]  D. I. Padilla-Frausto and S. P. Wallace, The Federal Poverty Level Does Not Meet the Data Needs of the California Legislature, UCLA Center for Health Policy Research, Los Angeles, Calif, USA, 2012.
[34]  SAS version 9.2, SAS Institute, Cary, NC, USA.
[35]  J. F. Price, P. I. Mowbray, A. J. Lee, A. Rumley, G. D. O. Lowe, and F. G. R. Fowkes, “Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh Artery Study,” European Heart Journal, vol. 20, no. 5, pp. 344–353, 1999.
[36]  J. A. Ambrose and R. S. Barua, “The pathophysiology of cigarette smoking and cardiovascular disease: an update,” Journal of the American College of Cardiology, vol. 43, no. 10, pp. 1731–1737, 2004.
[37]  M. Andriollo-Sanchez, I. Hininger-Favier, N. Meunier et al., “Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH Study,” European Journal of Clinical Nutrition, vol. 59, supplement 2, pp. S58–S62, 2005.
[38]  American College of Sports Medicine, Guidelines for Exercise Testing and Prescription, Lippincott Williams & Wilkins, Baltimore, Md, USA, 6th ed edition, 2000.
[39]  G. F. Fletcher, G. J. Balady, E. A. Amsterdam et al., “Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association,” Circulation, vol. 104, no. 14, pp. 1694–1740, 2001.
[40]  J. Myers, “Exercise and cardiovascular health,” Circulation, vol. 107, no. 1, pp. e2–5, 2003.
[41]  “Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report: National Institutes of Health,” Obesity Research, supplement 2, pp. 51S–209S, 1998.
[42]  M. A. Mittleman and E. Mostofsky, “Physical, psychological and chemical triggers of acute cardiovascular events: preventive strategies,” Circulation, vol. 124, no. 3, pp. 346–354, 2011.
[43]  T. C. Russ, E. Stamatakis, M. Hamer, J. M. Starr, M. Kivim?ki, and G. D. Batty, “Association between psychological distress and mortality: individual participant pooled analysis of 10 prospective cohort studies,” British Medical Journal, vol. 345, p. e4933, 2012.
[44]  J. Denollet, A. A. Schiffer, and V. Spek, “A general propensity to psychological distress affects cardiovascular outcomes: evidence from research on the type D (distressed) personality profile,” Circulation, vol. 3, no. 5, pp. 546–557, 2010.
[45]  D. L. Wingard, L. Suarez, and E. Barrett Connor, “The sex differential in mortality from all causes and ischemic heart disease,” American Journal of Epidemiology, vol. 117, no. 2, pp. 165–172, 1983.
[46]  S. G. Haynes and M. Feinleib, “Women, work and coronary heart disease: prospective findings from the Framingham Heart Study,” American Journal of Public Health, vol. 70, no. 2, pp. 133–141, 1980.
[47]  J. S. House, V. Strecher, H. L. Metzner, and C. A. Robbins, “Occupational stress and health among men and women in the Tecumseh Community Health Study,” Journal of Health and Social Behavior, vol. 27, no. 1, pp. 62–77, 1986.
[48]  S. Jolly, E. Vittinghoff, A. Chattopadhyay, and K. Bibbins-Domingo, “Higher cardiovascular disease prevalence and mortality among younger blacks compared to whites,” American Journal of Medicine, vol. 123, no. 9, pp. 811–818, 2010.
[49]  P. Fronstin, Sources of health insurance and characteristics of the uninsured: analysis of the March 2006 Current Population Survey. Employee Benefit Research Institute Issue Brief No. 298, Social Science Research Network, 2012, http://ssrn.com/abstract 938130.
[50]  M. E. Gornick, P. W. Eggers, T. W. Reilly et al., “Effects of race and income on mortality and use of services among medicare beneficiaries,” The New England Journal of Medicine, vol. 335, no. 11, pp. 791–799, 1996.
[51]  J. S. Holmes, I. E. Arispe, and E. Moy, “Heart disease and prevention: race and age differences in heart disease prevention, treatment, and mortality,” Medical Care, vol. 43, no. 3, supplement, pp. I33–I41, 2005.
[52]  L. A. Murray, “Racial and ethnic differences among medicare beneficiaries,” Health Care Financing Review, vol. 21, no. 4, pp. 117–127, 2000.
[53]  Centers for Disease Control and Prevention (CDC), “Racial/ethnic disparities in prevalence, treatment, and control of hypertension—United States, 1999–2002,” Morbidity and Mortality Weekly Report, vol. 54, no. 1, pp. 7–9, 2005.
[54]  K. L. Ong, B. M. Y. Cheung, Y. B. Man, C. P. Lau, and K. S. L. Lam, “Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004,” Hypertension, vol. 49, no. 1, pp. 69–75, 2007.
[55]  G. Lee and M. Carrington, “Tackling heart disease and poverty,” Nursing and Health Sciences, vol. 9, no. 4, pp. 290–294, 2007.
[56]  C. Cubbin, K. Sundquist, H. Ahlén, S. E. Johansson, M. A. Winkleby, and J. Sundquist, “Neighborhood deprivation and cardiovascular disease risk factors: protective and harmful effects,” Scandinavian Journal of Public Health, vol. 34, no. 3, pp. 228–237, 2006.
[57]  W. Corser, A. Sikorskii, A. Olomu, M. Stommel, C. Proden, and M. Holmes-Rovner, “Concordance between comorbidity data from patient self-report interviews and medical record documentation,” BMC Health Services Research, vol. 8, article 85, 2008.
[58]  M. P. Jones, R. Bartrop, H. G. Dickson, and L. Forcier, “Concordance between sources of morbidity reports: self-reports and medical records,” Frontiers in Pharmacology, vol. 2, p. 16, 2011.
[59]  California Health Interview Survey. CHIS, 2005 Neighborhood Response Propensity Study, CHIS Working Paper Series, UCLA Center for Health Policy Research, Los Angeles, Calif, USA, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133