全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Strategies for Sleep Apnea in Hypertension and Heart Failure

DOI: 10.1155/2013/814169

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sleep-disordered breathing (SDB) causes hypoxemia, negative intrathoracic pressure, and frequent arousal, contributing to increased cardiovascular disease mortality and morbidity. Obstructive sleep apnea syndrome (OSAS) is linked to hypertension, ischemic heart disease, and cardiac arrhythmias. Successful continuous positive airway pressure (CPAP) treatment has a beneficial effect on hypertension and improves the survival rate of patients with cardiovascular disease. Thus, long-term compliance with CPAP treatment may result in substantial blood pressure reduction in patients with resistant hypertension suffering from OSAS. Central sleep apnea and Cheyne-Stokes respiration occur in 30–50% of patients with heart failure (HF). Intermittent hypoxemia, nocturnal surges in sympathetic activity, and increased left ventricular preload and afterload due to negative intrathoracic pressure all lead to impaired cardiac function and poor life prognosis. SDB-related HF has been considered the potential therapeutic target. CPAP, nocturnal O2 therapy, and adaptive servoventilation minimize the effects of sleep apnea, thereby improving cardiac function, prognosis, and quality of life. Early diagnosis and treatment of SDB will yield better therapeutic outcomes for hypertension and HF. 1. Introduction Obstructive sleep apnea syndrome (OSAS) is characterized by recurrent episodes of sleep apnea accompanied by hypoxia, fluctuations in heart rate and blood pressure (BP), frequent arousal, and consequent sleep fragmentation, resulting in an activation of the sympathetic nervous system [1–7]. The most common neuropsychiatric manifestation of OSAS is excessive daytime sleepiness that is secondary to sleep fragmentation and the lack of slow-wave sleep; other major, long-term manifestations of OSAS include disorders of the cardiovascular system [2]. The Sleep Heart Health Study [8] and Wisconsin Sleep Cohort Study [9] reported that OSAS is an independent risk factor for the development of essential hypertension. According to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, OSAS is one of the identifiable causes of hypertension [10]. Central sleep apnea (CSA) and Cheyne-Stokes respiration (CSR) occur in 30–50% of patients with left ventricular (LV) dysfunction and heart failure (HF) caused by hypertension, cardiomyopathy, and ischemic heart disease [11]. Treatment of sleep apnea with nocturnal continuous positive airway pressure (CPAP) in individuals with congestive HF not only treats sleep-disordered

References

[1]  E. A. Phillipson, “Sleep apnea,” in Harrison's Principles of Internal Medicine, E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, and J. L. Jameson, Eds., pp. 1520–1523, McGraw-Hill, New York, NY, USA, 15th edition, 2001.
[2]  T. D. Bradley and J. S. Floras, “Sleep apnea and heart failure: part I: obstructive sleep apnea,” Circulation, vol. 107, no. 12, pp. 1671–1678, 2003.
[3]  R. S. T. Leung and T. D. Bradley, “Sleep apnea and cardiovascular disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 12, pp. 2147–2165, 2001.
[4]  A. Noda, T. Okada, F. Yasuma, N. Nakashima, and M. Yokota, “Cardiac hypertrophy in obstructive sleep apnea syndrome,” Chest, vol. 107, no. 6, pp. 1538–1544, 1995.
[5]  A. Noda, F. Yasuma, T. Okada, and M. Yokota, “Circadian rhythm of autonomic activity in patients with obstructive sleep apnea syndrome,” Clinical Cardiology, vol. 21, no. 4, pp. 271–276, 1998.
[6]  A. Noda, F. Yasuma, T. Okada, and M. Yokota, “Influence of movement arousal on circadian rhythm of blood pressure in obstructive sleep apnea syndrome,” Journal of Hypertension, vol. 18, no. 5, pp. 539–544, 2000.
[7]  V. K. Somers, M. E. Dyken, M. P. Clary, and F. M. Abboud, “Sympathetic neural mechanisms in obstructive sleep apnea,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1897–1904, 1995.
[8]  F. J. Nieto, T. B. Young, B. K. Lind et al., “Association of sleep-disordered breathing sleep apnea, and hypertension in a large community-based study,” Journal of the American Medical Association, vol. 283, no. 14, pp. 1829–1836, 2000.
[9]  P. E. Peppard, T. Young, M. Palta, and J. Skatrud, “Prospective study of the association between sleep-disordered breathing and hypertension,” The New England Journal of Medicine, vol. 342, no. 19, pp. 1378–1384, 2000.
[10]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2571, 2003.
[11]  T. D. Bradley and J. S. Floras, “Sleep apnea and heart failure—part II: central sleep apnea,” Circulation, vol. 107, no. 13, pp. 1822–1826, 2003.
[12]  T. D. Bradley, A. G. Logan, R. J. Kimoff et al., “Continuous positive airway pressure for central sleep apnea and heart failure,” The New England Journal of Medicine, vol. 353, no. 19, pp. 2025–2033, 2005.
[13]  M. Arzt, J. S. Floras, A. G. Logan et al., “Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP),” Circulation, vol. 115, no. 25, pp. 3173–3180, 2007.
[14]  V. K. Somers, D. P. White, R. A. William, et al., “Sleep apnea and cardiovascular disease: an American heart association college of cardiology foundation scientific statement from the American heart association council for high blood pressure reserch professional education committee, coucil on clinical cardiology, stroke council, and council on cardiovascular nursing in collaboration with the national heart lung, and blood institute national center on sleep disorders research(National Institutes of Health),” Circulation, vol. 118, no. 10, pp. 1080–1111, 2008.
[15]  A. Noda, T. Okada, H. Hayashi, F. Yasuma, and M. Yokota, “24-hour ambulatory blood pressure variability in obstructive sleep apnea syndrome,” Chest, vol. 103, no. 5, pp. 1343–1347, 1993.
[16]  K. Kario, “Morning surge in blood pressure and cardiovascular risk: evidence and perspectives,” Hypertension, vol. 56, no. 5, pp. 765–773, 2010.
[17]  C. J. Worsnop, M. T. Naughton, C. E. Barter, T. O. Morgan, A. I. Anderson, and R. J. Pierce, “The prevalence of obstructive sleep apnea in hypertensives,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 111–115, 1998.
[18]  D. Levy, R. J. Garrison, D. D. Savage, W. B. Kannel, and W. P. Castelli, “Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study,” The New England Journal of Medicine, vol. 322, no. 22, pp. 1561–1566, 1990.
[19]  A. Noda, T. Okada, F. Yasuma, T. Sobue, N. Nakashima, and M. Yokota, “Prognosis of the middle-aged and aged patients with obstructive sleep apnea syndrome,” Psychiatry and Clinical Neurosciences, vol. 52, no. 1, pp. 79–85, 1998.
[20]  A. Noda, S. Nakata, H. Fukatsu et al., “Aortic Pressure augmentation as a marker of cardiovascular risk in obstructive sleep apnea syndrome,” Hypertension Research, vol. 31, no. 6, pp. 1109–1114, 2008.
[21]  A. Noda, S. Nakata, Y. Koike et al., “Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome,” Hypertension Research, vol. 30, no. 8, pp. 669–676, 2007.
[22]  S. K. Sharma, E. V. Reddy, A. Sharma et al., “Prevalence and risk factors of syndrome Z in urban Indians,” Sleep Medicine, vol. 11, no. 6, pp. 562–568, 2010.
[23]  L. Lozano, J. L. Tovar, G. Sampol et al., “Continuous positive airway pressure treatment in sleep apnea patients with resistant hypertension: a randomized, controlled trial,” Journal of Hypertension, vol. 28, no. 10, pp. 2161–2168, 2010.
[24]  P. Lavie and V. Hoffstein, “Sleep apnea syndrome: a possible contributing factor to resistant,” Sleep, vol. 24, no. 6, pp. 721–725, 2001.
[25]  J. Ribstein, G. Du Cailar, and A. Mimran, “Glucose tolerance and age-associated decline in renal function of hypertensive patients,” Journal of Hypertension, vol. 19, no. 12, pp. 2257–2264, 2001.
[26]  S. C. Gon?alves, D. Martinez, M. Gus et al., “Obstructive sleep apnea and resistant hypertension: a case-control study,” Chest, vol. 132, no. 6, pp. 1858–1862, 2007.
[27]  M. A. Martínez-García, R. Gómez-Aldaraví, J. J. Soler-Catalu?a, T. G. Martínez, B. Bernácer-Alpera, and P. Román-Sánchez, “Positive effect of CPAP treatment on the control of difficult-to-treat hypertension,” European Respiratory Journal, vol. 29, no. 5, pp. 951–957, 2007.
[28]  F. Campos-Rodriguez, M. A. Martinez-Garcia, I. de la Cruz-Moron, C. Almeida-Gonzalez, P. Catalan-Serra, and J. M. Montserrat, “Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatmenta cohort study,” Annals of Internal Medicine, vol. 156, no. 2, pp. 115–122, 2012.
[29]  J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” The Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005.
[30]  F. Barbé, J. Durán-Cantolla, F. Capote et al., “Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 7, pp. 718–726, 2010.
[31]  F. Barbé, J. Durán-Cantolla, M. Sánchez-de-la-Torre, et al., “Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial,” Journal of the American Medical Association, vol. 307, no. 20, pp. 2161–2168, 2012.
[32]  J. W. Crowell, A. C. Guyton, and J. W. Moore, “Basic oscillating mechanism of Cheyne-Stokes breathing,” The American Journal of Physiology, vol. 187, no. 2, pp. 395–398, 1956.
[33]  D. P. Francis, K. Willson, L. C. Davies, A. J. S. Coats, and M. Piepoli, “Quantitative general theory for periodic breathing in chronic heart failure and its clinical implications,” Circulation, vol. 102, no. 18, pp. 2214–2221, 2000.
[34]  S. Javaheri, “Central sleep apnea in congestive heart failure: prevalence, mechanisms, impact, and therapeutic options,” Seminars in Respiratory and Critical Care Medicine, vol. 26, no. 1, pp. 44–55, 2005.
[35]  D. D. Sin, F. Fitzgerald, J. D. Parker, G. Newton, J. S. Floras, and T. D. Bradley, “Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 4, pp. 1101–1106, 1999.
[36]  K. Ferrier, A. Campbell, B. Yee et al., “Sleep-disordered breathing occurs frequently in stable outpatients with congestive heart failure,” Chest, vol. 128, no. 4, pp. 2116–2122, 2005.
[37]  S. Javaheri, “Sleep disorders in systolic heart failure: a prospective study of 100 male patients. The final report,” International Journal of Cardiology, vol. 106, no. 1, pp. 21–28, 2006.
[38]  A. Vazir, P. C. Hastings, M. Dayer et al., “A high prevalence of sleep disordered breathing in men with mild symptomatic chronic heart failure due to left ventricular systolic dysfunction,” European Journal of Heart Failure, vol. 9, no. 3, pp. 243–250, 2007.
[39]  D. Yumino, H. Wang, J. S. Floras et al., “Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction,” Journal of Cardiac Failure, vol. 15, no. 4, pp. 279–285, 2009.
[40]  T. Brack, I. Thüer, C. F. Clarenbach et al., “Daytime Cheyne-Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality,” Chest, vol. 132, no. 5, pp. 1463–1471, 2007.
[41]  S. Javaheri, R. Shukla, H. Zeigler, and L. Wexler, “Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure,” Journal of the American College of Cardiology, vol. 49, no. 20, pp. 2028–2034, 2007.
[42]  M. T. Naughton, P. P. Liu, D. C. Benard, R. S. Goldstein, and T. D. Bradley, “Treatment of congestive heart failure and Cheyne-Stokes respiration during sleep by continuous positive airway pressure,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 1, pp. 92–97, 1995.
[43]  D. D. Sin, A. G. Logan, F. S. Fitzgerald, P. P. Liu, and T. D. Bradley, “Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne-Stokes respiration,” Circulation, vol. 102, no. 1, pp. 61–66, 2000.
[44]  Y. Takasaki, D. Orr, J. Popkin, R. Rutherford, P. Liu, and T. D. Bradley, “Effect of nasal continuous positive airway pressure on sleep apnea in congestive heart failure,” American Review of Respiratory Disease, vol. 140, no. 6, pp. 1578–1584, 1989.
[45]  H. Wang, J. D. Parker, G. E. Newton et al., “Influence of obstructive sleep apnea on mortality in patients with heart failure,” Journal of the American College of Cardiology, vol. 49, no. 15, pp. 1625–1631, 2007.
[46]  T. Kasai, K. Narui, T. Dohi et al., “Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure,” Chest, vol. 133, no. 3, pp. 690–696, 2008.
[47]  A. Noda, H. Izawa, H. Asano et al., “Beneficial effect of bilevel positive airway pressure on left ventricular function in ambulatory patients with idiopathic dilated cardiomyopathy and central sleep apnea-hypopnea: a preliminary study,” Chest, vol. 131, no. 6, pp. 1694–1701, 2007.
[48]  T. Dohi, T. Kasai, K. Narui et al., “Bi-level positive airway pressure ventilation for treating heart failure with central sleep apnea that is unresponsive to continuous positive airway pressure,” Circulation Journal, vol. 72, no. 7, pp. 1100–1105, 2008.
[49]  T. Kasai, K. Narui, T. Dohi et al., “Efficacy of nasal bi-level positive airway pressure in congestive heart failure patients with Cheyne-Stokes respiration and central sleep apnea,” Circulation Journal, vol. 69, no. 8, pp. 913–921, 2005.
[50]  H. Teschler, J. D?hring, Y. M. Wang, and M. Berthon-Jones, “Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 4, pp. 614–619, 2001.
[51]  S. Sasayama, T. Izumi, Y. Seino, K. Ueshima, and H. Asanoi, “Effects of nocturnal oxygen therapy on outcome measures in patients with chronic heart failure and Cheyne-Stokes respiration,” Circulation Journal, vol. 70, no. 1, pp. 1–7, 2006.
[52]  S. Sasayama, T. Izumi, M. Matsuzaki et al., “Improvement of quality of life with nocturnal oxygen therapy in heart failure patients with central sleep apnea,” Circulation Journal, vol. 73, no. 7, pp. 1255–1262, 2009.
[53]  T. Toyama, R. Seki, S. Kasama et al., “Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea,” Circulation Journal, vol. 73, no. 2, pp. 299–304, 2009.
[54]  J. T. Walsh, R. Andrews, R. Starling, A. J. Cowley, I. D. A. Johnston, and W. J. Kinnear, “Effects of captopril and oxygen on sleep apnoea in patients with mild to moderate congestive cardiac failure,” British Heart Journal, vol. 73, no. 3, pp. 237–241, 1995.
[55]  P. Solin, P. Bergin, M. Richardson, D. M. Kaye, E. H. Walters, and M. T. Naughton, “Influence of pulmonary capillary wedge pressure on central apnea in heart failure,” Circulation, vol. 99, no. 12, pp. 1574–1579, 1999.
[56]  A. Tamura, Y. Kawano, S. Naono, M. Kotoku, and J. I. Kadota, “Relationship between β-blocker treatment and the severity of central sleep apnea in chronic heart failure,” Chest, vol. 131, no. 1, pp. 130–135, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413