全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interferon-Gamma Release Assays versus Tuberculin Skin Testing for the Diagnosis of Latent Tuberculosis Infection: An Overview of the Evidence

DOI: 10.1155/2013/601737

Full-Text   Cite this paper   Add to My Lib

Abstract:

A profusion of articles have been published on the accuracy and uses of interferon-gamma releasing assays. Here we review the clinical applications, advantages, and limitations of the tuberculin skin test and interferon-gamma release assays and provide an overview of the most recent systematic reviews conducted for different indications for the use of these tests. We conclude that both tests are accurate to detect latent tuberculosis, although interferon-gamma release assays have higher specificity than tuberculin skin testing in BCG-vaccinated populations, particularly if BCG is received after infancy. However, both tests perform poorly to predict risk for progression to active tuberculosis. Interferon-gamma release assays have significant limitations in serial testing because of spontaneous variability and lack of a validated definition of conversion and reversion, making it difficult for clinicians to interpret changes in category (conversions and reversions). So far, the most important clinical evidence, that is, that isoniazid preventive therapy reduces the risk for progression to disease, has been produced only in tuberculin skin test-positive individuals. 1. Introduction Tuberculosis (TB) is an important cause of morbidity and mortality worldwide [1]. Governmental and non-governmental organization efforts and investments in the last decades to control the epidemic have resulted in a steady decline in disease incidence and mortality [2]. One third of the world population, however, has latent tuberculosis (TB) infection (LTBI), and to reach the United Nations Millennium Goals of eliminating the disease by 2050, it is its necessary to couple diagnosis and treatment of active disease with new approaches to reduce this vast reservoir of LTBI, sufficient for generating new TB cases for many decades even if transmission was suppressed [3]. Thus, in addition to rapid, accurate, and inexpensive detection of active TB, the detection—and treatment—of LTBI is also an important strategy for TB control [1]. In the present paper, we summarize the advantages and limitations of tuberculin skin testing (TST) and overview the evidence for the use of the newer interferon-gamma release assays (IGRA) for the diagnosis of LTBI (Table 1). Table 1: Comparison of TST and IGRA regarding several tests' characteristics. 2. Tuberculin Skin Testing Until the beginning of this century, TST was the only diagnostic method for detecting LTBI. The test is based on a delayed-type hypersensitivity reaction that occurs when those infected with M. tuberculosis are exposed to certain

References

[1]  World Health Organization, Global Tuberculosis Control: WHO Report 2011, World Health Organization, Geneva, Switzerland, 2011.
[2]  C. Dye, C. J. Watt, D. M. Bleed, S. M. Hosseini, and M. C. Raviglione, “Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally,” Journal of the American Medical Association, vol. 293, no. 22, pp. 2767–2775, 2005.
[3]  C. Dye and B. G. Williams, “Eliminating human tuberculosis in the twenty-first century,” Journal of the Royal Society Interface, vol. 5, no. 23, pp. 653–662, 2008.
[4]  R. E. Huebner, M. F. Schein, and J. B. Bass, “The tuberculin skin test,” Clinical Infectious Diseases, vol. 17, no. 6, pp. 968–975, 1993.
[5]  E. L. Pesanti, “The negative tuberculin test: tuberculin, HIV, and anergy panels,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 6, pp. 1699–1709, 1994.
[6]  R. E. Huebner, M. E. Villarino, and D. E. Snider, “Tuberculin skin testing and the HIV epidemic,” Journal of the American Medical Association, vol. 267, no. 3, pp. 409–410, 1992.
[7]  M. Farhat, C. Greenaway, M. Pai, and D. Menzies, “False-positive tuberculin skin tests: what is the absolute effect of BCG and non-tuberculous mycobacteria?” International Journal of Tuberculosis and Lung Disease, vol. 10, no. 11, pp. 1192–1204, 2006.
[8]  R. Diel, A. Nienhaus, C. Lange, and T. Schaberg, “Cost-optimisation of screening for latent tuberculosis in close contacts,” European Respiratory Journal, vol. 28, no. 1, pp. 35–44, 2006.
[9]  J. E. Bearman, H. Kleinman, V. V. Glyer, and O. M. Lacroix, “A study of variability in tuberculin test reading,” American Review of Respiratory Disease, vol. 90, pp. 913–919, 1964.
[10]  S. D. Chaparas, H. M. Vandiviere, and I. Melvin, “Tuberculin test. Variability with the Mantoux procedure,” American Review of Respiratory Disease, vol. 132, no. 1, pp. 175–177, 1985.
[11]  E. Perez-Stable and G. Slutkin, “A demonstration of lack of variability among six tuberculin skin test readers,” American Journal of Public Health, vol. 75, no. 11, pp. 1341–1343, 1985.
[12]  D. Menzies, G. Gardiner, M. Farhat, C. Greenaway, and M. Pai, “Thinking in three dimensions: a web-based algorithm to aid the interpretation of tuberculin skin test results,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 5, pp. 498–505, 2008.
[13]  E. Vynnycky and P. E. M. Fine, “The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection,” Epidemiology and Infection, vol. 119, no. 2, pp. 183–201, 1997.
[14]  S. Grzybowski and E. A. Allen, “The challenge of tuberculosis in decline. A study based on the epidemiology of tuberculosis in ontario, Canada,” The American Review of Respiratory Disease, vol. 90, pp. 707–720, 1964.
[15]  D. Menzies, “Interpretation of repeated tuberculin tests: boosting, conversion, and reversion,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 1, pp. 15–21, 1999.
[16]  J. B. Bass Jr. and R. A. Serio, “The use of repeat skin tests to eliminate the booster phenomenon in serial tuberculin testing,” American Review of Respiratory Disease, vol. 123, no. 4, pp. 394–396, 1981.
[17]  D. Menzies, H. Al Jahdali, and B. Al Otaibi, “Recent developments in treatment of latent tuberculosis infection,” Indian Journal of Medical Research, vol. 133, no. 3, pp. 257–266, 2011.
[18]  J. Z. Metcalfe, C. K. Everett, K. R. Steingart, A. Cattamanchi, L. Huang, P. C. Hopewell, et al., “Interferon-γ release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis,” Journal of Infectious Diseases, vol. 204, supplement 4, pp. S1120–S1129, 2011.
[19]  H. C. Bucher, L. E. Griffith, G. H. Guyatt et al., “Isoniazid prophylaxis for tuberculosis in HIV infection: a meta-analysis of randomized controlled trials,” AIDS, vol. 13, no. 4, pp. 501–507, 1999.
[20]  T. Samandari, T. B. Agizew, S. Nyirenda et al., “6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 377, no. 9777, pp. 1588–1598, 2011.
[21]  P. Andersen, M. E. Munk, J. M. Pollock, and T. M. Doherty, “Specific immune-based diagnosis of tuberculosis,” The Lancet, vol. 356, no. 9235, pp. 1099–1104, 2000.
[22]  M. Pai, A. Zwerling, and D. Menzies, “Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update,” Annals of Internal Medicine, vol. 149, no. 3, pp. 177–184, 2008.
[23]  M. Pai, R. Joshi, S. Dogra et al., “T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 1, pp. 84–92, 2009.
[24]  K. Dheda, R. N. Van Zyl-Smit, L. A. Sechi et al., “Utility of quantitative T-cell responses versus unstimulated interferon-γ for the diagnosis of pleural tuberculosis,” European Respiratory Journal, vol. 34, no. 5, pp. 1118–1126, 2009.
[25]  A. K. Detjen, L. Loebenberg, H. M. S. Grewal et al., “Short-term reproducibility of a commercial interferon gamma release assay,” Clinical and Vaccine Immunology, vol. 16, no. 8, pp. 1170–1175, 2009.
[26]  D. Doberne, R. L. Gaur, and N. Banaei, “Preanalytical delay reduces sensitivity of QuantiFERON-TB gold in-tube assay for detection of latent tuberculosis infection,” Journal of Clinical Microbiology, vol. 49, no. 8, pp. 3061–3064, 2011.
[27]  F. C. Ringshausen, A. Nienhaus, J. Torres Costa, H. Knoop, S. Schlosser, G. Schultze-Werninghaus, et al., “Within-subject variability of Mycobacterium tuberculosis-specific gamma interferon responses in German health care workers,” Clinical and Vaccine Immunology, vol. 18, no. 7, pp. 1176–1182, 2011.
[28]  M. Slater, J. Parsonnet, and N. Banaei, “Investigation of false-positive results given by the QuantiFERON-TB gold in-tube assay,” Journal of Clinical Microbiology, vol. 50, no. 9, pp. 3105–3107, 2012.
[29]  M. Pai and R. O'Brien, “Serial testing for tuberculosis: can we make sense of T cell assay conversions and reversions?” PLoS Medicine, vol. 4, no. 6, Article ID e208, 2007.
[30]  R. Diel, R. Loddenkemper, and A. Nienhaus, “Predictive value of interferon-gamma release assays and tuberculin skin testing for predicting progression from latent TB infection to disease state: a meta-analysis,” Chest, vol. 142, no. 1, pp. 63–75, 2012.
[31]  M. X. Rangaka, K. A. Wilkinson, J. R. Glynn, D. Ling, D. Menzies, J. Mwansa-Kambafwile, et al., “Predictive value of interferon-gamma release assays for incident active tuberculosis: a systematic review and meta-analysis,” The Lancet Infectious Diseases, vol. 12, no. 1, pp. 45–55, 2012.
[32]  C. M. Denkinger, K. Dheda, and M. Pai, “Guidelines on interferon-γ release assays for tuberculosis infection: concordance, discordance or confusion?” Clinical Microbiology and Infection, vol. 17, no. 6, pp. 806–814, 2011.
[33]  World Health Organization, Use of Tuberculosis Interferon-Gamma Release Assays (IGRAs) in Low- and Middle-Income Countries: Policy Statement, World Health Organization, Geneva, Switzerland, 2011.
[34]  S. J. Tsiouris, D. Coetzee, P. L. Toro, J. Austin, Z. Stein, and W. El-Sadr, “Sensitivity analysis and potential uses of a novel gamma interferon release assay for diagnosis of tuberculosis,” Journal of Clinical Microbiology, vol. 44, no. 8, pp. 2844–2850, 2006.
[35]  Y. Kobashi, K. Mouri, S. Yagi et al., “Usefulness of the QuantiFERON TB-2G test for the differential diagnosis of pulmonary tuberculosis,” Internal Medicine, vol. 47, no. 4, pp. 237–243, 2008.
[36]  A. Zwerling, M. A. Behr, A. Verma, T. F. Brewer, D. Menzies, and M. Pai, “The BCG world atlas: a database of global BCG vaccination policies and practices,” PLoS Medicine, vol. 8, no. 3, Article ID e1001012, 2011.
[37]  J. K. Chun, C. K. Kim, H. S. Kim et al., “The role of a whole blood interferon-γ assay for the detection of latent tuberculosis infection in Bacille Calmette-Guérin vaccinated children,” Diagnostic Microbiology and Infectious Disease, vol. 62, no. 4, pp. 389–394, 2008.
[38]  L. Bianchi, L. Galli, M. Moriondo et al., “Interferon-gamma release assay improves the diagnosis of tuberculosis in children,” Pediatric Infectious Disease Journal, vol. 28, no. 6, pp. 510–514, 2009.
[39]  E. Hansted, A. Andriuskeviciene, R. Sakalauskas, R. Kevalas, and B. Sitkauskiene, “T-cell-based diagnosis of tuberculosis infection in children in Lithuania: a country of high incidence despite a high coverage with bacille Calmette-Guerin vaccination,” BMC Pulmonary Medicine, vol. 9, article 41, 2009.
[40]  A. C. Hesseling, A. M. Mandalakas, H. L. Kirchner et al., “Highly discordant T cell responses in individuals with recent exposure to household tuberculosis,” Thorax, vol. 64, no. 10, pp. 840–846, 2009.
[41]  K. Higuchi, Y. Kawabe, S. Mitarai, T. Yoshiyama, N. Harada, and T. Mori, “Comparison of performance in two diagnostic methods for tuberculosis infection,” Medical Microbiology and Immunology, vol. 198, no. 1, pp. 33–37, 2009.
[42]  J. Lighter, M. Rigaud, R. Eduardo, C. H. Peng, and H. Pollack, “Latent tuberculosis diagnosis in children by using the QuantiFERON-TB gold in-tube test,” Pediatrics, vol. 123, no. 1, pp. 30–37, 2009.
[43]  M. Lucas, P. Nicol, E. McKinnon et al., “A prospective large-scale study of methods for the detection of latent Mycobacterium tuberculosis infection in refugee children,” Thorax, vol. 65, no. 5, pp. 442–448, 2010.
[44]  D. C. Stefan, A. Dippenaar, A. K. Detjen et al., “Interferon-gamma release assays for the detection of Mycobacterium tuberculosis infection in children with cancer,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 6, pp. 689–694, 2010.
[45]  A. M. Mandalakas, A. C. Hesseling, N. N. Chegou et al., “High level of discordant IGRA results in HIV-infected adults and children,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 4, pp. 417–423, 2008.
[46]  J. Domínguez, J. Ruiz-Manzano, M. De Souza-Galv?o et al., “Comparison of two commercially available gamma interferon blood tests for immunodiagnosis of tuberculosis,” Clinical and Vaccine Immunology, vol. 15, no. 1, pp. 168–171, 2008.
[47]  A. M. Mandalakas, A. K. Detjen, A. C. Hesseling, A. Benedetti, and D. Menzies, “Interferon-gamma release assays and childhood tuberculosis: systematic review and meta-analysis,” International Journal of Tuberculosis and Lung Disease, vol. 15, no. 8, pp. 1018–1032, 2011.
[48]  M. Bakir, K. A. Millington, A. Soysal et al., “Prognostic value of a T-cell-based, interferon-γ biomarker in children with tuberculosis contact,” Annals of Internal Medicine, vol. 149, no. 11, pp. 777–786, 2008.
[49]  H. del Corral, S. C. Paris, N. D. Marin, D. M. Marin, L. Lopez, H. M. Henao, et al., “IFNgamma response to Mycobacterium tuberculosis, risk of infection and disease in household contacts of tuberculosis patients in Colombia,” PLoS ONE, vol. 4, no. 12, Article ID e8257, 2009.
[50]  P. C. Hill, D. J. Jackson-Sillah, A. Fox et al., “Incidence of tuberculosis and the predictive value of ELISPOT and Mantoux tests in Gambian case contacts,” PLoS ONE, vol. 3, no. 1, Article ID e1379, 2008.
[51]  S. V. Kik, W. P. J. Franken, M. Mensen et al., “Predictive value for progression to tuberculosis by IGRA and TST in immigrant contacts,” European Respiratory Journal, vol. 35, no. 6, pp. 1346–1353, 2010.
[52]  A. Cattamanchi, R. Smith, K. R. Steingart et al., “Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis,” Journal of Acquired Immune Deficiency Syndromes, vol. 56, no. 3, pp. 230–238, 2011.
[53]  A. Zwerling, S. van den Hof, J. Scholten, F. Cobelens, D. Menzies, and M. Pai, “Interferon-gamma release assays for tuberculosis screening of healthcare workers: a systematic review,” Thorax, vol. 67, no. 1, pp. 62–70, 2011.
[54]  M. C. Aichelburg, A. Rieger, F. Breitenecker et al., “Detection and prediction of active tuberculosis disease by a whole-blood interferon-γ release assay in HIV-l-infected individuals,” Clinical Infectious Diseases, vol. 48, no. 7, pp. 954–962, 2009.
[55]  S. A. Clark, S. L. Martin, A. Pozniak et al., “Tuberculosis antigen-specific immune responses can be detected using enzyme-linked immunospot technology in human immunodeficiency virus (HIV)-1 patients with advanced disease,” Clinical and Experimental Immunology, vol. 150, no. 2, pp. 238–244, 2007.
[56]  S. Jonnalagadda, B. L. Payne, E. Brown et al., “Latent tuberculosis detection by interferon γ release assay during pregnancy predicts active tuberculosis and mortality in human immunodeficiency virus type 1-infected women and their children,” Journal of Infectious Diseases, vol. 202, no. 12, pp. 1826–1835, 2010.
[57]  M. Santin, S. Casas, M. Saumoy et al., “Detection of latent tuberculosis by the tuberculin skin test and a whole-blood interferon-γ release assay, and the development of active tuberculosis in HIV-seropositive persons,” Diagnostic Microbiology and Infectious Disease, vol. 69, no. 1, pp. 59–65, 2011.
[58]  L. F. Zhang, X. Q. Liu, L. Y. Zuo, T. S. Li, G. H. Deng, and A. X. Wang, “Longitudinal observation of an interferon gamma-released assay (T-SPOT.TB) for Mycobacterium tuberculosis infection in AIDS patients on highly active antiretroviral therapy,” Chinese Medical Journal, vol. 123, no. 9, pp. 1117–1121, 2010.
[59]  C. Akolo, I. Adetifa, S. Shepperd, and J. Volmink, “Treatment of latent tuberculosis infection in HIV infected persons,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD000171, 2010.
[60]  D. W. Dowdy and J. E. Golub, “Tests for latent tuberculosis infection and isoniazid preventive therapy,” The Lancet Infectious Diseases, vol. 12, no. 11, pp. 827–828, 2012.
[61]  S. Ribeiro, K. Dooley, J. Hackman et al., “T-SPOT.TB responses during treatment of pulmonary tuberculosis,” BMC Infectious Diseases, vol. 9, article 23, 2009.
[62]  V. Bosshard, P. Roux-Lombard, T. Perneger et al., “Do results of the T-SPOT.TB interferon-γ release assay change after treatment of tuberculosis?” Respiratory Medicine, vol. 103, no. 1, pp. 30–34, 2009.
[63]  C. B. Chee, K. W. KhinMar, S. H. Gan, T. M. Barkham, C. K. Koh, L. Shen, et al., “Tuberculosis treatment effect on T-cell interferon-gamma responses to Mycobacterium tuberculosis-specific antigens,” European Respiratory Journal, vol. 36, no. 2, pp. 355–361, 2010.
[64]  I. Latorre, N. Altet, M. de Souza-Galvao, J. Ruiz-Manzano, A. Lacoma, C. Prat, et al., “Specific Mycobacterium tuberculosis T cell responses to RD1-selected peptides for the monitoring of anti-tuberculosis therapy,” Scandinavian Journal of Infectious Diseases, vol. 44, no. 3, pp. 161–167, 2012.
[65]  J. Domínguez, M. D. Souza-Galv?o, J. Ruiz-Manzano et al., “T-cell responses to the Mycobacterium tuberculosis-specific antigens in active tuberculosis patients at the beginning, during, and after antituberculosis treatment,” Diagnostic Microbiology and Infectious Disease, vol. 63, no. 1, pp. 43–51, 2009.
[66]  K. Dheda, A. Pooran, M. Pai et al., “Interpretation of Mycobacterium tuberculosis antigen-specific IFN-γ release assays (T-SPOT.TB) and factors that may modulate test results,” Journal of Infection, vol. 55, no. 2, pp. 169–173, 2007.
[67]  W. P. J. Franken, S. M. Arend, S. F. T. Thijsen et al., “Interferon-gamma release assays during follow-up of tuberculin skin test-positive contacts,” International Journal of Tuberculosis and Lung Disease, vol. 12, no. 11, pp. 1286–1294, 2008.
[68]  I. Sauzullo, F. Mengoni, M. Lichtner et al., “In vivo and in vitro effects of antituberculosis treatment on mycobacterial interferon-γ T cell response,” PLoS ONE, vol. 4, no. 4, Article ID e5187, 2009.
[69]  Y. Kobashi, T. Sugiu, Y. Ohue et al., “Long-term follow-up of the QuantiFERON TB-2G test for active tuberculosis disease,” Internal Medicine, vol. 47, no. 22, pp. 1957–1961, 2008.
[70]  D. Goletti, M. P. Parracino, O. Butera et al., “Isoniazid prophylaxis differently modulates T-cell responses to RD1-epitopes in contacts recently exposed to Mycobacterium tuberculosis: a pilot study,” Respiratory Research, vol. 8, article 5, 2007.
[71]  A. M. Dyrhol-Riise, G. Gran, T. Wenzel-Larsen, B. Blomberg, C. G. Haanshuus, and O. M?rkve, “Diagnosis and follow-up of treatment of latent tuberculosis; the utility of the QuantiFERON-TB Gold In-tube assay in outpatients from a tuberculosis low-endemic country,” BMC Infectious Diseases, vol. 10, article 57, 2010.
[72]  S. H. Lee, W. J. Lew, H. J. Kim et al., “Serial interferon-gamma release assays after rifampicin prophylaxis in a tuberculosis outbreak,” Respiratory Medicine, vol. 104, no. 3, pp. 448–453, 2010.
[73]  S. W. Lee, C. T. Lee, and J. J. Yim, “Serial interferon-gamma release assays during treatment of active tuberculosis in young adults,” BMC Infectious Diseases, vol. 10, article 300, 2010.
[74]  M. Bocchino, P. Chairadonna, A. Matarese et al., “Limited usefulness of QuantiFERON-TB GOLD in-tube for monitoring anti-tuberculosis therapy,” Respiratory Medicine, vol. 104, no. 10, pp. 1551–1556, 2010.
[75]  J. L. Herrmann, M. Belloy, R. Porcher et al., “Temporal dynamics of interferon gamma responses in children evaluated for tuberculosis,” PLoS ONE, vol. 4, no. 1, Article ID e4130, 2009.
[76]  N. Nenadic, B. K. Kirin, I. Z. Letoja, D. Plavec, R. Z. Topic, and S. Dodig, “Serial interferon-gamma release assay in children with latent tuberculosis infection and children with tuberculosis,” Pediatric Pulmonology, vol. 47, no. 4, pp. 401–408, 2012.
[77]  E. Chiappini, F. Fossi, F. Bonsignori, S. Sollai, L. Galli, and M. de Martino, “Utility of interferon-gamma release assay results to monitor anti-tubercular treatment in adults and children,” Clinical Therapeutics, vol. 34, no. 5, pp. 1041–1048, 2012.
[78]  A. R. J. Bamford, A. M. Crook, J. E. Clark et al., “Comparison of interferon-γ release assays and tuberculin skin test in predicting active tuberculosis (TB) in children in the UK: a paediatric TB network study,” Archives of Disease in Childhood, vol. 95, no. 3, pp. 180–186, 2010.
[79]  T. G. Connell, M. A. Davies, C. Johannisen et al., “Reversion and conversion of Mycobacterium tuberculosis IFN-γ ELISpot results during anti-tuberculous treatment in HIV-infected children,” BMC Infectious Diseases, vol. 10, article 138, 2010.
[80]  B. Kampmann, E. Whittaker, A. Williams et al., “Interferon-γ release assays do not identify more children with active tuberculosis than the tuberculin skin test,” European Respiratory Journal, vol. 33, no. 6, pp. 1374–1382, 2009.
[81]  D. A. Lewinsohn, M. N. Lobato, and J. A. Jereb, “Interferon-γ release assays: new diagnostic tests for Mycobacterium tuberculosis infection, and their use in children,” Current Opinion in Pediatrics, vol. 22, no. 1, pp. 71–76, 2010.
[82]  S. MacHingaidze, C. S. Wiysonge, Y. Gonzalez-Angulo et al., “The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: a systematic review and meta-analysis,” Pediatric Infectious Disease Journal, vol. 30, no. 8, pp. 694–700, 2011.
[83]  N. Nenadic, B. K. Kirin, I. Z. Letoja, D. Plavec, R. Z. Topic, and S. Dodig, “Serial interferon-γ release assay in children with latent tuberculosis infection and children with tuberculosis,” Pediatric Pulmonology, vol. 47, no. 4, pp. 401–408, 2012.
[84]  M. P. Nicol, M. A. Davies, K. Wood et al., “Comparison of T-SPOT. TB assay and tuberculin skin test for the evaluation of young children at high risk for tuberculosis in a community setting,” Pediatrics, vol. 123, no. 1, pp. 38–43, 2009.
[85]  M. G. Aabye, P. Ravn, G. PrayGod et al., “The impact of HIV infection and CD4 cell count on the performance of an interferon gamma release assay in patients with pulmonary tuberculosis,” PLoS ONE, vol. 4, no. 1, Article ID e4220, 2009.
[86]  I. M. O. Adetifa, M. D. Lugos, A. Hammond et al., “Comparison of two interferon gamma release assays in the diagnosis of Mycobacterium tuberculosis infection and disease in The Gambia,” BMC Infectious Diseases, vol. 7, article 122, 2007.
[87]  I. M. O. Adetifa, M. O. C. Ota, D. J. Jeffries et al., “Commercial interferon gamma release assays compared to the tuberculin skin test for diagnosis of latent Mycobacterium tuberculosis infection in childhood contacts in the gambia,” Pediatric Infectious Disease Journal, vol. 29, no. 5, pp. 439–443, 2010.
[88]  K. Baba, S. S?rnes, A. A. Hoosen et al., “Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON TB-Gold interferon-gamma assay,” BMC Infectious Diseases, vol. 8, article 35, 2008.
[89]  I. Brock, M. Ruhwald, B. Lundgren, H. Westh, L. R. Mathiesen, and P. Ravn, “Latent tuberculosis in HIV positive, diagnosed by the M. tuberculosis specific interferon-γ test,” Respiratory Research, vol. 7, article 56, 2006.
[90]  A. Cattamanchi, I. Ssewenyana, J. L. Davis et al., “Role of interferon-gamma release assays in the diagnosis of pulmonary tuberculosis in patients with advanced HIV infection,” BMC Infectious Diseases, vol. 10, article 75, 2010.
[91]  K. Dheda, A. Lalvani, R. F. Miller et al., “Performance of a T-cell-based diagnostic test for tuberculosis infection in HIV-infected individuals is independent of CD4 cell count,” AIDS, vol. 19, no. 17, pp. 2038–2041, 2005.
[92]  K. Dheda, R. Van Zyl Smit, M. Badri, and M. Pai, “T-cell interferon-γ release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings,” Current Opinion in Pulmonary Medicine, vol. 15, no. 3, pp. 188–200, 2009.
[93]  K. Dheda, R. N. van Zyl-Smit, R. Meldau et al., “Quantitative lung T cell responses aid the rapid diagnosis of pulmonary tuberculosis,” Thorax, vol. 64, no. 10, pp. 847–853, 2009.
[94]  R. S. Garfein, R. Lozada, L. Liu et al., “High prevalence of latent tuberculosis infection among injection drug users in Tijuana, Mexico,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 5, pp. 626–632, 2009.
[95]  W. Jiang, L. Shao, Y. Zhang et al., “High-sensitive and rapid detection of Mycobacterium tuberculosis infection by IFN-γ release assay among HIV-infected individuals in BCG-vaccinated area,” BMC Immunology, vol. 10, article 31, 2009.
[96]  S. S. J. Lee, Y. C. Liu, T. S. Huang et al., “Comparison of the interferon-gamma; release assay and the tuberculin skin test for contact investigation of tuberculosis in BCG-vaccinated health care workers,” Scandinavian Journal of Infectious Diseases, vol. 40, no. 5, pp. 373–380, 2008.
[97]  A. Machado Jr., K. Emodi, I. Takenami et al., “Analysis of discordance between the tuberculin skin test and the interferon-gamma release assay,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 4, pp. 446–453, 2009.
[98]  M. X. Rangaka, K. A. Wilkinson, R. Seldon et al., “Effect of HIV-1 infection on T-cell-based and skin test detection of tuberculosis infection,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 5, pp. 514–520, 2007.
[99]  L. Richeldi, M. Losi, R. D'Amico et al., “Performance of tests for latent tuberculosis in different groups of immunocompromised patients,” Chest, vol. 136, no. 1, pp. 198–204, 2009.
[100]  I. Rivas, I. Latorre, A. Sanvisens et al., “Prospective evaluation of latent tuberculosis with interferon-γ release assays in drug and alcohol abusers,” Epidemiology and Infection, vol. 137, no. 9, pp. 1342–1347, 2009.
[101]  M. Ruhwald, J. Petersen, K. Kofoed et al., “Improving T-cell assays for the diagnosis of latent TB infection: potential of a diagnostic test based on IP-10,” PLoS ONE, vol. 3, no. 8, Article ID e2858, 2008.
[102]  C. Stephan, T. Wolf, U. Goetsch et al., “Comparing QuantiFERON-tuberculosis gold, T-SPOT tuberculosis and tuberculin skin test in HIV-infected individuals from a low prevalence tuberculosis country,” AIDS, vol. 22, no. 18, pp. 2471–2479, 2008.
[103]  N. J. Talati, U. Seybold, B. Humphrey et al., “Poor concordance between interferon-γ release assays and tuberculin skin tests in diagnosis of latent tuberculosis infection among HIV-infected individuals,” BMC Infectious Diseases, vol. 9, article 15, 2009.
[104]  B. Chang, H. Y. Park, K. Jeon, J. K. Ahn, H. S. Cha, E. M. Koh, et al., “Interferon-gamma release assay in the diagnosis of latent tuberculosis infection in arthritis patients treated with tumor necrosis factor antagonists in Korea,” Clinical Rheumatology, vol. 30, no. 12, pp. 1535–1541, 2011.
[105]  E. Tavast, T. Tuuminen, S. H. Pakkanen, M. Eriksson, A. Kantele, A. Jarvinen, et al., “Immunosuppression adversely affects TST but Not IGRAs in patients with psoriasis or inflammatory musculoskeletal diseases,” International Journal of Rheumatology, vol. 2012, Article ID 381929, 8 pages, 2012.
[106]  R. Smith, A. Cattamanchi, K. R. Steingart, C. Denkinger, K. Dheda, K. L. Winthrop, et al., “Interferon-gamma release assays for diagnosis of latent tuberculosis infection: evidence in immune-mediated inflammatory disorders,” Current Opinion in Rheumatology, vol. 23, no. 4, pp. 377–384, 2011.
[107]  D. I. Ling, M. Pai, V. Davids, L. Brunet, L. Lenders, R. Meldau, et al., “Are interferon-gamma release assays useful for diagnosing active tuberculosis in a high-burden setting?” European Respiratory Journal, vol. 38, no. 3, pp. 649–656, 2011.
[108]  C. B. E. Chee, S. H. Gan, K. W. KhinMar et al., “Comparison of sensitivities of two commercial gamma interferon release assays for pulmonary tuberculosis,” Journal of Clinical Microbiology, vol. 46, no. 6, pp. 1935–1940, 2008.
[109]  L. Leidl, H. Mayanja-Kizza, G. Sotgiu et al., “Relationship of immunodiagnostic assays for tuberculosis and numbers of circulating CD4+ T-cells in HIV infection,” European Respiratory Journal, vol. 35, no. 3, pp. 619–626, 2010.
[110]  R. Markova, Y. Todorova, R. Drenska, I. Elenkov, M. Yankova, and D. Stefanova, “Usefulness of interferon-gamma release assays in the diagnosis of tuberculosis infection in HIV-infected patients in Bulgaria,” Biotechnology and Biotechnological Equipment, vol. 23, no. 1, pp. 1103–1108, 2009.
[111]  F. Bartalesi, S. Vicidomini, D. Goletti et al., “QuantiFERON-TB Gold and the TST are both useful for latent tuberculosis infection screening in autoimmune diseases,” European Respiratory Journal, vol. 33, no. 3, pp. 586–593, 2009.
[112]  S. M. Behar, D. S. Shin, A. Maier, J. Coblyn, S. Helfgott, and M. E. Weinblatt, “Use of the T-SPOT.TB assay to detect latent tuberculosis infection among rheumatic disease patients on immunosuppressive therapy,” Journal of Rheumatology, vol. 36, no. 3, pp. 546–551, 2009.
[113]  M. Bocchino, A. Matarese, B. Bellofiore et al., “Performance of two commercial blood IFN-γ release assays for the detection of Mycobacterium tuberculosis infection in patient candidates for anti-TNF-α treatment,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 27, no. 10, pp. 907–913, 2008.
[114]  N. Cobanoglu, U. Ozcelik, U. Kalyoncu et al., “Interferon-gamma assays for the diagnosis of tuberculosis infection before using tumour necrosis factor-alpha blockers,” International Journal of Tuberculosis and Lung Disease, vol. 11, no. 11, pp. 1177–1182, 2007.
[115]  F. Gogus, Z. Günendi, R. Karakus, Z. Erdogan, K. Hizel, and F. Atalay, “Comparison of tuberculin skin test and QuantiFERON-TB gold in tube test in patients with chronic inflammatory diseases living in a tuberculosis endemic population,” Clinical and Experimental Medicine, vol. 10, no. 3, pp. 173–177, 2010.
[116]  S. Kleinert, O. Kurzai, J. Elias et al., “Comparison of two interferon-γ release assays and tuberculin skin test for detecting latent tuberculosis in patients with immune-mediated inflammatory diseases,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 782–784, 2010.
[117]  A. J. Kwakernaak, P. M. Houtman, J. F. L. Weel, J. P. L. Spoorenberg, and T. L. T. A. Jansen, “A comparison of an interferon-gamma release assay and tuberculin skin test in refractory inflammatory disease patients screened for latent tuberculosis prior to the initiation of a first tumor necrosis factor α inhibitor,” Clinical Rheumatology, vol. 30, no. 4, pp. 505–510, 2011.
[118]  E. Laffitte, J. P. Janssens, P. Roux-Lombard et al., “Tuberculosis screening in patients with psoriasis before antitumour necrosis factor therapy: comparison of an interferon-γ release assay vs. tuberculin skin test,” British Journal of Dermatology, vol. 161, no. 4, pp. 797–800, 2009.
[119]  C. D. L. Marques, A. L. B. P. Duarte, V. M. B. De Lorena et al., “Evaluation of an interferon gamma assay in the diagnosis of latent tuberculosis infection in patients with rheumatoid arthritis,” Rheumatology International, vol. 30, no. 1, pp. 57–62, 2009.
[120]  J. Martin, C. Walsh, A. Gibbs et al., “Comparison of interferon γ release assays and conventional screening tests before tumour necrosis factor α blockade in patients with inflammatory arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 181–185, 2010.
[121]  G. Matulis, P. Jüni, P. M. Villiger, and S. D. Gadola, “Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of a Mycobacterium tuberculosis antigen-specific interferon γ assay,” Annals of the Rheumatic Diseases, vol. 67, no. 1, pp. 84–90, 2008.
[122]  D. P. De Leon, E. Acevedo-Vasquez, S. Alvizuri et al., “Comparison of an interferon-γ assay with tuberculin skin testing for detection of tuberculosis (TB) infection in patients with rheumatoid arthritis in a TB-endemic population,” Journal of Rheumatology, vol. 35, no. 5, pp. 776–781, 2008.
[123]  A. M. Schoepfer, B. Flogerzi, S. Fallegger et al., “Comparison of interferon-gamma release assay versus tuberculin skin test for tuberculosis screening in inflammatory bowel disease,” American Journal of Gastroenterology, vol. 103, no. 11, pp. 2799–2806, 2008.
[124]  D. Vassilopoulos, N. Stamoulis, E. Hadziyannis, and A. J. Archimandritis, “Usefulness of enzyme-linked immunosorbent assay (Elispot) compared to tuberculin skin testing for latent tuberculosis screening in rheumatic patients scheduled for anti-tumor necrosis factor treatment. Addendum,” Journal of Rheumatology, vol. 35, no. 7, article 1464, 2008.
[125]  G. H. Mazurek, J. Jereb, A. Vernon, P. LoBue, S. Goldberg, and K. Castros, “Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection—United States, 2010,” Morbidity and Mortality Weekly Report, vol. 59, no. RR05, pp. 1–25, 2010.
[126]  H. Nakaoka, L. Lawson, S. B. Squire et al., “Risk for tuberculosis among children,” Emerging Infectious Diseases, vol. 12, no. 9, pp. 1383–1388, 2006.
[127]  K. Okada, T. E. Mao, T. Mori et al., “Performance of an interferon-gamma release assay for diagnosing latent tuberculosis infection in children,” Epidemiology and Infection, vol. 136, no. 9, pp. 1179–1187, 2008.
[128]  R. Petrucci, N. A. Amer, R. Q. Gurgel et al., “Interferon gamma, interferon-gamma-induced-protein 10, and tuberculin responses of children at high risk of tuberculosis infection,” Pediatric Infectious Disease Journal, vol. 27, no. 12, pp. 1073–1077, 2008.
[129]  T. A. Thomas, D. Mondal, Z. Noor et al., “Malnutrition and helminth infection affect performance of an interferon γ-release assay,” Pediatrics, vol. 126, no. 6, pp. e1522–e1529, 2010.
[130]  J. C. Choi, J. W. Shin, J. Y. Kim, I. W. Park, B. W. Choi, and M. K. Lee, “The effect of previous tuberculin skin test on the follow-up examination of whole-blood interferon-γ assay in the screening for latent tuberculosis infection,” Chest, vol. 133, no. 6, pp. 1415–1420, 2008.
[131]  K. Ewer, K. A. Millington, J. J. Deeks, L. Alvarez, G. Bryant, and A. Lalvani, “Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 7, pp. 831–839, 2006.
[132]  P. C. Hill, R. H. Brookes, A. Fox et al., “Longitudinal assessment of an ELISPOT test for Mycobacterium tuberculosis infection,” PLoS Medicine, vol. 4, no. 6, pp. 1061–1070, 2007.
[133]  M. Pai, R. Joshi, S. Dogra et al., “Serial testing of health care workers for tuberculosis using interferon-γ assay,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 3, pp. 349–355, 2006.
[134]  R. N. van Zyl-Smit, A. Zwerling, K. Dheda, and M. Pai, “Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review,” PLoS ONE, vol. 4, no. 12, Article ID e8517, 2009.
[135]  T. Yoshiyama, N. Harada, K. Higuchi, Y. Nakajima, and H. Ogata, “Estimation of incidence of tuberculosis infection in health-care workers using repeated interferon-γ assays,” Epidemiology and Infection, vol. 137, no. 12, pp. 1691–1698, 2009.
[136]  S. Machingaidze, S. Verver, H. Mulenga, D. A. Abrahams, M. Hatherill, W. Hanekom, et al., “Predictive value of recent quantiferon conversion for tuberculosis disease in adolescents,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 10, pp. 1051–1056, 2012.
[137]  S. Perry, L. Sanchez, S. Yang, Z. Agarwal, P. Hurst, and J. Parsonnet, “Reproducibility of QuantiFERON-TB gold in-tube assay,” Clinical and Vaccine Immunology, vol. 15, no. 3, pp. 425–432, 2008.
[138]  A. Schablon, M. Harling, R. Diel, F. C. Ringshausen, J. Torres Costa, and A. Nienhaus, “Serial testing with an interferon-gamma release assay in German healthcare workers,” GMS Krankenhaushygiene Interdisziplin?r, vol. 5, no. 2, 2010.
[139]  D. Tripodi, B. Brunet-Courtois, V. Nael et al., “Evaluation of the tuberculin skin test and the interferon-release assay for TB screening in French healthcare workers,” Journal of Occupational Medicine and Toxicology, vol. 4, no. 1, article 30, 2009.
[140]  S. E. Van Brummelen, A. M. Bauwens, N. J. Schl?sser, and S. M. Arend, “Kinetics of a tuberculosis-specific gamma interferon release assay in military personnel with a positive tuberculin skin test,” Clinical and Vaccine Immunology, vol. 17, no. 6, pp. 937–943, 2010.
[141]  K. Higuchi, N. Harada, and T. Mori, “Interferon-γ responses after isoniazid chemotherapy for latent tuberculosis,” Respirology, vol. 13, no. 3, pp. 468–472, 2008.
[142]  J. E. Kaplan, C. Benson, K. H. Holmes, J. T. Brooks, A. Pau, and H. Masur, “Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America,” Morbidity and Mortality Weekly Report. Recommendations and Reports, vol. 58, no. 4, Article ID CE1, p. 1, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133