全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Does the Inclusion of Virtual Reality Games within Conventional Rehabilitation Enhance Balance Retraining after a Recent Episode of Stroke?

DOI: 10.1155/2013/649561

Full-Text   Cite this paper   Add to My Lib

Abstract:

This randomised controlled and double-blinded pilot study evaluated if interactive virtual reality balance related games integrated within conventional rehabilitation sessions resulted in more superior retraining of dynamic balance compared to CR after stroke. 19 subjects diagnosed with a recent episode of stroke were recruited from a local rehabilitation hospital and randomly assigned to either a control or an experimental group. Subjects in the control groups underwent 60 minutes of conventional rehabilitation while those in the experimental groups underwent 40 minutes of convention rehabilitation and 20 minutes of self-directed virtual reality balanced rehabilitation. Functional Reach Test, Timed Up and Go, Modified Barthel Index, Berg Balance Scale, and Centre of Pressure of subjects in both groups were evaluated before and on completion of the rehabilitation sessions. Results indicate that the inclusion of interactive virtual reality balance related games within conventional rehabilitation can lead to improved functional mobility and balance after a recent episode of stroke without increasing treatment time that requires more health professional manpower. 1. Introduction The world is aging and chronic conditions such as stroke are more prevalent [1]. Global fatality from stroke had reduced in most countries, but there is an increased demand for poststroke rehabilitation services [2]. Novel therapy such as virtual reality, robot-aided therapy, and neuromuscular electrostimulation reported varied outcomes during rehabilitation. A review by Oujamaa and colleagues [3] found motor improvement reported in 4 studies and 6 reported functional improvement when mixed techniques of intensive task-oriented repetitive training using constraint induced therapy and bilateral task training were included in their rehabilitation programme in the first 6 months after stroke without any additional hours compared with experimental group. Laver and colleagues [4] found limited evidence to conclude that the use of virtual reality and interactive video gaming improved arm function and activities of daily living (ADL) function when compared with the same dose of conventional therapy. Moreover, conflicting evidence exists to support the transference of trained task from the virtual environment to the real world [5]. Sisto et al. [5] claim that despite virtual reality being able to systematically and in a serial fashion allow one to explore sensory, motor, and visual strategies that are important for movement, it may actually slow down recovery as performance gains are

References

[1]  K. Christensen, G. Doblhammer, R. Rau, and J. W. Vaupel, “Ageing populations: the challenges ahead,” The Lancet, vol. 374, no. 9696, pp. 1196–1208, 2009.
[2]  V. L. Feigin, C. M. Lawes, D. A. Bennett, S. L. Barker-Collo, and V. Parag, “Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review,” The Lancet Neurology, vol. 8, no. 4, pp. 355–369, 2009.
[3]  L. Oujamaa, I. Relave, J. Froger, D. Mottet, and J.-Y. Pelissier, “Rehabilitation of arm function after stroke. Literature review,” Annals of Physical and Rehabilitation Medicine, vol. 52, no. 3, pp. 269–293, 2009.
[4]  K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual reality for stroke rehabilitation,” Cochrane Database of Systematic Reviews, vol. 9, Article ID CD008349, 2011.
[5]  S. A. Sisto, G. F. Forrest, and D. Glendinning, “Virtual reality applications for motor rehabilitation after stroke,” Topics in Stroke Rehabilitation, vol. 8, no. 4, pp. 11–23, 2002.
[6]  R. W. Bohannon and K. M. Leary, “Standing balance and function over the course of acute rehabilitation,” Archives of Physical Medicine & Rehabilitation, vol. 76, no. 11, pp. 994–996, 1995.
[7]  K. N. K. Fong, C. C. H. Chan, and D. K. S. Au, “Relationship of motor and cognitive abilities to functional performance in stroke rehabilitation,” Brain Injury, vol. 15, no. 5, pp. 443–453, 2001.
[8]  A. Forster and J. Young, “Incidence and consequences of falls due to stroke: a systematic inquiry,” British Medical Journal, vol. 311, no. 6997, pp. 83–86, 1995.
[9]  J.-H. Lin, C.-L. Hsieh, S.-F. Hsiao, and M.-H. Huang, “Predicting long-term care institution utilization among post-rehabilitation stroke patients in Taiwan: a medical centre-based study,” Disability and Rehabilitation, vol. 23, no. 16, pp. 722–730, 2001.
[10]  K. J. Sandin and B. S. Smith, “The measure of balance in sitting in stroke rehabilitation prognosis,” Stroke, vol. 21, no. 1, pp. 82–86, 1990.
[11]  M. Di Monaco, M. Trucco, R. Di Monaco, R. Tappero, and A. Cavanna, “The relationship between initial trunk control or postural balance and inpatient rehabilitation outcome after stroke: a prospective comparative study,” Clinical Rehabilitation, vol. 24, no. 6, pp. 543–554, 2010.
[12]  K. M. Michael, J. K. Allen, and R. F. MacKo, “Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness,” Archives of Physical Medicine & Rehabilitation, vol. 86, no. 8, pp. 1552–1556, 2005.
[13]  T. E. Shubert, “Evidence-based exercise prescription for balance and falls prevention: a current review of the literature,” Journal of Geriatric Physical Therapy, vol. 34, no. 3, pp. 100–108, 2011.
[14]  G. Dejong, C.-H. Hsieh, K. Putman, R. J. Smout, S. D. Horn, and W. Tian, “Physical therapy activities in stroke, knee arthroplasty, and traumatic brain injury rehabilitation: their variation, similarities, and association with functional outcomes,” Physical Therapy, vol. 91, no. 12, pp. 1826–1837, 2011.
[15]  World Health Organization, “World Health Report 2006: working together for health,” http://www.who.int/whr/2006/whr06_en.pdf.
[16]  T. Pigford, “Feasibility and benefit of using the Nintendo Wii Fit for balance rehabilitation in an elderly patient experiencing recurrent falls,” Journal of Student Physical Therapy Research, vol. 2, no. 1, pp. 12–20, 2010.
[17]  E. Bisson, B. Contant, H. Sveistrup, and Y. Lajoie, “Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training,” Cyberpsychology & Behavior, vol. 10, no. 1, pp. 16–23, 2007.
[18]  M. Thornthon, S. Marshall, J. McComas, H. Finestone, A. McCormick, and H. Sveistrup, “Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers,” Brain Injury, vol. 19, no. 12, pp. 989–1000, 2005.
[19]  P. S. Smith, J. A. Hembree, and M. E. Thompson, “Berg Balance Scale and Functional Reach: determining the best clinical tool for individuals post acute stroke,” Clinical Rehabilitation, vol. 18, no. 7, pp. 811–818, 2004.
[20]  S. S. Ng and C. W. Hui-Chan, “The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke,” Archives of Physical Medicine & Rehabilitation, vol. 86, no. 8, pp. 1641–1647, 2005.
[21]  L. Zeltzer, “Barthel Index. StrokEngine Assess,” 2010, http://strokengine.ca/assess/module_bi_intro-en.html.
[22]  R. A. Clark, A. L. Bryant, Y. Pua, P. McCrory, K. Bennell, and M. Hunt, “Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance,” Gait and Posture, vol. 31, no. 3, pp. 307–310, 2010.
[23]  A. Sainsbury, G. Seebass, A. Bansal, and J. B. Young, “Reliability of the Barthel Index when used with older people,” Age and Ageing, vol. 34, no. 3, pp. 228–232, 2005.
[24]  B. S. Rajaratnam, W. F. Ho, V. Y. J. Goh, S. Y. C. Hong, and D. Y. S. Lim, “A pilot study of the efficacy of interactive virtual reality sports on balance performance among older women,” Journal Sains Kesihatan Malaysia, vol. 8, pp. 21–26, 2010.
[25]  S. Okada, K. Hirakawa, Y. Takada, and H. Kinoshita, “Age-related differences in postural control in humans in response to a sudden deceleration generated by postural disturbance,” European Journal of Applied Physiology, vol. 85, no. 1-2, pp. 10–18, 2001.
[26]  D. K. A. Singh, B. S. Rajaratnam, V. Palaniswamy, H. Pearson, V. P. Raman, and P. S. Bong, “Participating in a virtual reality balance exercise program can reduce risk and fear of falls,” Mauritas, vol. 73, pp. 239–243, 2012.
[27]  J. E. Deutsch, D. Robbins, J. Morrison, and P. Guarrera Bowlby, “Wii-based compared to standard of care balance and mobility rehabilitation for two individuals post-stroke,” in Proceedings of the Virtual Rehabilitation International Conference (VR '09), pp. 117–120, July 2009.
[28]  H. Sugarman, A. Weisel-Eichler, A. Burstin, and R. Brown, “Use of the Wii Fit system for the treatment of balance problems in the elderly: a feasibility study,” in Proceedings of the Virtual Rehabilitation International Conference (VR '09), pp. 111–116, July 2009.
[29]  D. Meldrum, A. Glennon, S. Herdman, D. Murray, and R. McConn-Walsh, “Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii Fit Plus,” Disability & Rehabilitation: Assistive Technology, vol. 7, no. 3, pp. 205–210, 2012.
[30]  S. A. Bomberger, The effects of Nintendo Wii FIT on balance of elderly adults [Ph.D. thesis], The W&M Digital Archive, 2010, https://digitalarchive.wm.edu/handle/10288/2018.
[31]  J. C. Nitz, S. Kuys, R. Isles, and S. Fu, “Is the Wii Fit a new-generation tool for improving balance, health and well-being? A pilot study,” Climacteric, vol. 13, no. 5, pp. 487–491, 2010.
[32]  K. A. Brumels, T. Blasius, T. Cortright, D. Oumedian, and B. Solberg, “Comparison of efficacy between traditional and video game based balance programs,” Clinical Kinesiology, vol. 62, no. 4, pp. 26–31, 2008.
[33]  C. A. Emery, M. S. Rose, J. R. McAllister, and W. H. Meeuwisse, “A prevention strategy to reduce the incidence of injury in high school basketball: a cluster randomized controlled trial,” Clinical Journal of Sport Medicine, vol. 17, no. 1, pp. 17–24, 2007.
[34]  A. L. Betker, T. Szturm, Z. K. Moussavi, and C. Nett, “Video game-based exercises for balance rehabilitation: a single-subject design,” Archives of Physical Medicine & Rehabilitation, vol. 87, no. 8, pp. 1141–1149, 2006.
[35]  Y. S. Lam, D. W. K. Man, S. F. Tam, and P. L. Weiss, “Virtual reality training for stroke rehabilitation,” NeuroRehabilitation, vol. 21, no. 3, pp. 245–253, 2006.
[36]  G. Burdea, “Keynote address: virtual rehabilitation-benefits and challenges,” in Proceedings of the 1st International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological, Physical, Vocational) (VRMHR '02), pp. 1–11, Lausanne, Switzerland, 2002.
[37]  T. E. Howe, L. Rochester, A. Jackson, P. M. Banks, and V. A. Blair, “Exercise for improving balance in older people,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD004963, 2007.
[38]  G. Burdea, D. C. J. Martin, B. Rabin, A. Kale, and P. DiSanto, “Motor retraining in virtual reality: a feasibility study for upper-extremity rehabilitation in individuals with chronic stroke,” Journal of Physical Therapy Education, vol. 25, no. 1, pp. 19–30, 2011.
[39]  M. C. Moreira, M. C. de Amorim Lima, K. M. Ferraz, and M. AB. Rodrigues, “Use of virtual reality in gait recovery among post stroke patients—a systematic literature review,” Disability & Rehabilitation: Assistive Technology, 2013.
[40]  K. P. Padala, P. R. Padala, T. R. Malloy, et al., “Wii-Fit for improving gait and balance in an assisted living facility: a pilot study,” Journal of Aging Research, vol. 2012, Article ID 597573, 6 pages, 2012.
[41]  M. A. Williams, R. L. Soiza, A. M. Jenkinson, and A. Stewart, “EXercising with C-omputers in L-ater L-ife (EXCELL)—pilot and feasibility study of the acceptability of the Nintendo WiiFit in community-dwelling fallers,” BMC Research Notes, vol. 3, article 238, 2010.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133