全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2014 

Bacterial Ice Crystal Controlling Proteins

DOI: 10.1155/2014/976895

Full-Text   Cite this paper   Add to My Lib

Abstract:

Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. 1. Introduction Throughout the planet, environmental temperatures can reach low to freezing levels. Organisms indigenous to these habitats are presented with potential desiccation, which can lead to potentially detrimental challenges such as decreased enzymatic rates, freezing, and aggregation of endogenous proteins [1, 2]. Besides hindering cellular processes, subzero temperatures induce ice formation, which can lead to cell death [3]. In some cases, intracellular ice crystals can rupture cells either physically or through osmotic pressure changes [4]. The temperature at which water freezes varies based on solution homogeneity [1]. Pure water was reported to freeze at ?40°C. On the other hand, a heterogeneous water solution can contain additional molecules, such as dust particles and ice active bacteria, that act as seeds for ice nucleation [1, 5]. In these situations, a solution can freeze at high subzero temperatures, up to ?2°C. Cellular cryodamage incurred from freezing is dependent on freezing rate and ice crystal location [1]. For intracellular ice, a flash freezing rate (e.g., ?100°C/min) minimizes potential damage while a slow rate is more detrimental [3]. Furthermore, with a slow rate of freezing, the internal ice acts as a solute drawing water into cells until they rupture. On the other hand, extracellular ice can cause membrane fracturing or shifting in osmotic pressures [6]. During external freezing, water solidification into ice removes available liquid water and concentrates extracellular solutes. This change simulates a high saline environment, drawing out internal water that is needed for cellular processes.

References

[1]  H. Kawahara, “Cryoprotectants and ice-binding proteins,” in Psychrophiles: From Biodiversity to Biotechnology, pp. 229–246, Springer, Heidelberg, Germany, 2008.
[2]  N. Smolin and V. Daggett, “Formation of ice-like water structure on the surface of an antifreeze protein,” Journal of Physical Chemistry B, vol. 112, no. 19, pp. 6193–6202, 2008.
[3]  V. Bouvet and R. N. Ben, “Antifreeze glycoproteins: structure, conformation, and biological applications,” Cell Biochemistry and Biophysics, vol. 39, no. 2, pp. 133–144, 2003.
[4]  X. Sun, M. Griffith, J. J. Pasternak, and B. R. Glick, “Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2,” Canadian Journal of Microbiology, vol. 41, no. 9, pp. 776–784, 1995.
[5]  R. Margesin and V. Miteva, “Diversity and ecology of psychrophilic microorganisms,” Research in Microbiology, vol. 162, no. 3, pp. 346–361, 2011.
[6]  S. L. Wilson and V. K. Walker, “Selection of low-temperature resistance in bacteria and potential applications,” Environmental Technology, vol. 31, no. 8-9, pp. 943–956, 2010.
[7]  H. Xu, M. Griffith, C. L. Patten, and B. R. Glick, “Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2,” Canadian Journal of Microbiology, vol. 44, no. 1, pp. 64–73, 1998.
[8]  M. Griffith and K. V. Ewart, “Antifreeze proteins and their potential use in frozen foods,” Biotechnology Advances, vol. 13, no. 3, pp. 375–402, 1995.
[9]  R. N. Ben, “Antifreeze glycoproteins—preventing the growth of ice,” ChemBioChem, vol. 2, no. 3, pp. 161–166, 2001.
[10]  S. P. Graether and Z. Jia, “Modeling Pseudomonas syringae ice-nucleation protein as a β-helical protein,” Biophysical Journal, vol. 80, no. 3, pp. 1169–1173, 2001.
[11]  N. Muryoi, M. Sato, S. Kaneko et al., “Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2,” Journal of Bacteriology, vol. 186, no. 17, pp. 5661–5671, 2004.
[12]  N. Du, X. Y. Liu, and C. L. Hew, “Aggregation of antifreeze protein and impact on antifreeze activity,” Journal of Physical Chemistry B, vol. 110, no. 41, pp. 20562–20567, 2006.
[13]  C. P. Garnham, R. L. Campbell, V. K. Walker, and P. L. Davies, “Novel dimeric β-helical model of an ice nucleation protein with bridged active sites,” BMC Structural Biology, vol. 11, article 36, 2011.
[14]  H. Kawahara, Y. Nakano, K. Omiya, N. Muryoi, J. Nishikawa, and H. Obata, “Production of two types of ice crystal-controlling proteins in antarctic bacterium,” Journal of Bioscience and Bioengineering, vol. 98, no. 3, pp. 220–223, 2004.
[15]  S. L. Wilson, D. L. Kelley, and V. K. Walker, “Ice-active characteristics of soil bacteria selected by ice-affinity,” Environmental Microbiology, vol. 8, no. 10, pp. 1816–1824, 2006.
[16]  J. A. Raymond and A. L. DeVries, “Adsorption inhibition as a mechanism of freezing resistance in polar fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 6, pp. 2589–2593, 1977.
[17]  C. P. Garnham, R. L. Campbell, and P. L. Davies, “Anchored clathrate waters bind antifreeze proteins to ice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 18, pp. 7363–7367, 2011.
[18]  J. A. Gilbert, P. J. Hill, C. E. R. Dodd, and J. Laybourn-Parry, “Demonstration of antifreeze protein activity in Antarctic lake bacteria,” Microbiology, vol. 150, no. 1, pp. 171–180, 2004.
[19]  H. Kondo, Y. Hanada, H. Sugimoto et al., “Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 24, pp. 9360–9365, 2012.
[20]  Y. Celik, L. A. Graham, Y.-F. Mok, M. Bar, P. L. Davies, and I. Braslavsky, “Superheating of ice crystals in antifreeze protein solutions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5423–5428, 2010.
[21]  J. A. Gilbert, P. L. Davies, and J. Laybourn-Parry, “A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium,” FEMS Microbiology Letters, vol. 245, no. 1, pp. 67–72, 2005.
[22]  A. J. Scotter, C. B. Marshall, L. A. Graham, J. A. Gilbert, C. P. Garnham, and P. L. Davies, “The basis for hyperactivity of antifreeze proteins,” Cryobiology, vol. 53, no. 2, pp. 229–239, 2006.
[23]  D. Doucet, M. G. Tyshenko, M. J. Kuiper et al., “Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity,” European Journal of Biochemistry, vol. 267, no. 19, pp. 6082–6088, 2000.
[24]  C. Sidebottom, S. Buckley, P. Pudney et al., “Heat-stable antifreeze protein from grass,” Nature, vol. 406, no. 6793, p. 256, 2000.
[25]  Y.-F. Mok, F.-H. Lin, L. A. Graham, Y. Celik, I. Braslavsky, and P. L. Davies, “Structural basis for the superior activity of the large isoform of snow flea antifreeze protein,” Biochemistry, vol. 49, no. 11, pp. 2593–2603, 2010.
[26]  F.-H. Lin, T. Sun, G. L. Fletcher, and P. L. Davies, “Thermolabile antifreeze protein produced in Escherichia coli for structural analysis,” Protein Expression and Purification, vol. 82, no. 1, pp. 75–82, 2012.
[27]  R. S. Hobbs, M. A. Shears, L. A. Graham, P. L. Davies, and G. L. Fletcher, “Isolation and characterization of type i antifreeze proteins from cunner, Tautogolabrus adspersus, order Perciformes,” FEBS Journal, vol. 278, no. 19, pp. 3699–3710, 2011.
[28]  C. P. Garnham, J. A. Gilbert, C. P. Hartman, R. L. Campbell, J. Laybourn-Parry, and P. L. Davies, “A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold,” Biochemical Journal, vol. 411, no. 1, pp. 171–180, 2008.
[29]  A. J. Middleton, C. B. Marshall, F. Faucher et al., “Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site,” Journal of Molecular Biology, vol. 416, no. 5, pp. 713–724, 2012.
[30]  S. O. Yu, A. Brown, A. J. Middleton, M. M. Tomczak, V. K. Walker, and P. L. Davies, “Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis,” Cryobiology, vol. 61, no. 3, pp. 327–334, 2010.
[31]  Q. Li, Q. Yan, J. Chen et al., “Molecular characterization of an ice nucleation protein variant (InaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli,” International Journal of Biological Sciences, vol. 8, no. 8, 2012.
[32]  J. Barrett, “Thermal hysteresis proteins,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 2, pp. 105–117, 2001.
[33]  Z. Cheng, E. Park, and B. R. Glick, “1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt,” Canadian Journal of Microbiology, vol. 53, no. 7, pp. 912–918, 2007.
[34]  H. Kawahara, Y. Iwanaka, S. Higa et al., “A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum,” Cryo-Letters, vol. 28, no. 1, pp. 39–49, 2007.
[35]  Y. Yamashita, N. Nakamura, K. Omiya, J. Nishikawa, H. Kawahara, and H. Obata, “Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 2, pp. 239–247, 2002.
[36]  V. K. Walker, G. R. Palmer, and G. Voordouw, “Freeze-thaw tolerance and clues to the winter survival of a soil community,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1784–1792, 2006.
[37]  J. G. Duman and T. M. Olsen, “Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants,” Cryobiology, vol. 30, no. 3, pp. 322–328, 1993.
[38]  S. Guo, C. P. Garnham, J. C. Whitney, L. A. Graham, and P. L. Davies, “Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity,” PLoS ONE, vol. 7, no. 11, Article ID e48805, 2012.
[39]  J. Duan, W. Jiang, Z. Cheng, J. J. Heikkila, and B. R. Glick, “The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4,” PLoS ONE, vol. 8, no. 3, Article ID e58640, 2013.
[40]  Z. Wu, F. W. K. Kan, Y. M. She, and V. K. Walker, “Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community,” Applied Biochemistry and Microbiology, vol. 48, no. 4, pp. 363–370, 2012.
[41]  S. L. Wilson, P. Grogan, and V. K. Walker, “Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils,” Canadian Journal of Microbiology, vol. 58, no. 4, pp. 402–412, 2012.
[42]  A. Kajava and S. E. Lindow, “A model of the three-dimensional structure of ice nucleation proteins,” Journal of Molecular Biology, vol. 232, no. 3, pp. 709–717, 1993.
[43]  S. Hartmann, S. Augustin, T. Clauss et al., “Immersion freezing of ice nucleation active protein complexes,” Atmospheric Chemistry and Physics, vol. 13, no. 11, pp. 5751–5766, 2013.
[44]  M. A. Turner, F. Arellano, and L. M. Kozloff, “Components of ice nucleation structures of bacteria,” Journal of Bacteriology, vol. 173, no. 20, pp. 6515–6527, 1991.
[45]  L. M. Kozloff, M. A. Turner, F. Arellano, and M. Lute, “Phosphatidylinositol, a phospholipid of ice-nucleating bacteria,” Journal of Bacteriology, vol. 173, no. 6, pp. 2053–2060, 1991.
[46]  L. R. Maki, E. L. Galyan, M. M. Chang-Chien, and D. R. Caldwell, “Ice nucleation induced by Pseudomonas syringae,” Applied Microbiology, vol. 28, no. 3, pp. 456–459, 1974.
[47]  Z. Wu, L. Qin, and V. K. Walker, “Characterization and recombinant expression of a divergent ice nucleation protein from ‘Pseudomonas borealis’,” Microbiology, vol. 155, no. 4, pp. 1164–1169, 2009.
[48]  P. Phelps, T. H. Giddings, M. Prochoda, and R. Fall, “Release of cell-free ice nuclei by Erwinia herbicola,” Journal of Bacteriology, vol. 167, no. 2, pp. 496–502, 1986.
[49]  H. Kawahara, Y. Mano, and H. Obata, “Purification and characterization of extracellular ice-nucleating matter from Erwinia uredovora KUIN-3,” Bioscience, Biotechnology, and Biochemistry, vol. 57, no. 9, pp. 1429–1432, 1993.
[50]  S. Fukuoka, H. Kamishima, E. Tamiya, and I. Karube, “Spontaneous release of outer-membrane vesicles by Erwinia Carotovora,” Microbios, vol. 72, no. 292-93, pp. 167–173, 1992.
[51]  H. Obata, T. Tanaka, H. Kawahara, and T. Tokuyama, “Properties of cell-free ice nuclei from ice nucleation-active Pseudomonas fluorescens KUIN-1,” Journal of Fermentation and Bioengineering, vol. 76, no. 1, pp. 19–24, 1993.
[52]  N. Muryoi, K. Matsukawa, K. Yamade, H. Kawahara, and H. Obata, “Purification and properties of an ice-nucleating protein from an ice-nucleating bacterium, Pantoea ananatis KUIN-3,” Journal of Bioscience and Bioengineering, vol. 95, no. 2, pp. 157–163, 2003.
[53]  H. Nada, S. Zepeda, H. Miura, and Y. Furukawa, “Significant alterations in anisotropic ice growth rate induced by the ice nucleation-active bacteria Xanthomonas campestris,” Chemical Physics Letters, vol. 498, no. 1–3, pp. 101–106, 2010.
[54]  A. M. Anesio and J. Laybourn-Parry, “Glaciers and ice sheets as a biome,” Trends in Ecology and Evolution, vol. 27, no. 4, pp. 219–225, 2012.
[55]  K. Junge and B. D. Swanson, “High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments,” Biogeosciences, vol. 5, no. 3, pp. 865–873, 2008.
[56]  V. I. Miteva, P. P. Sheridan, and J. E. Brenchley, “Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core,” Applied and Environmental Microbiology, vol. 70, no. 1, pp. 202–213, 2004.
[57]  M. A. Cambours, P. Nejad, U. Granhall, and M. Ramstedt, “Frost-related dieback of willows. Comparison of epiphytically and endophytically isolated bacteria from different Salix clones, with emphasis on ice nucleation activity, pathogenic properties and seasonal variation,” Biomass and Bioenergy, vol. 28, no. 1, pp. 15–27, 2005.
[58]  R. D. O'Brien and S. E. Lindow, “Effect of plant species and environmental conditions on ice nucleation activity of Pseudomonas syringae on leaves,” Applied and Environmental Microbiology, vol. 54, no. 9, pp. 2281–2286, 1988.
[59]  S. S. Hirano and C. D. Upper, “Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 624–653, 2000.
[60]  A. Nicolai, P. Vernon, M. Lee, A. Ansart, and M. Charrier, “Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria,” Cryobiology, vol. 50, no. 1, pp. 48–57, 2005.
[61]  C. Tang, F. Sun, and T. Zhao, “Construction of ice nucleation active Enterobacter cloacae for control of insect pests,” Chinese Science Bulletin, vol. 48, no. 2, pp. 175–180, 2003.
[62]  C. Tang, F. Sun, X. Zhang, T. Zhao, and J. Qi, “Transgenic ice nucleation-active Enterobacter cloacae reduces cold hardiness of corn borer and cotton bollworm larvae,” FEMS Microbiology Ecology, vol. 51, no. 1, pp. 79–86, 2004.
[63]  N. Cochet and P. Widehem, “Ice crystallization by Pseudomonas syringae,” Applied Microbiology and Biotechnology, vol. 54, no. 2, pp. 153–161, 2000.
[64]  J. A. Anderson and E. N. Ashworth, “The effects of streptomycin, desiccation, and uv radiation on ice nucleation by Pseudomonas viridiflava,” Plant Physiology, vol. 80, no. 4, pp. 956–960, 1986.
[65]  E. Attard, H. Yang, A. Delort et al., “Effects of atmospheric conditions on ice nucleation activity of Pseudomonas,” Atmospheric Chemistry and Physics Discussions, vol. 12, no. 4, pp. 9491–9516, 2012.
[66]  O. M?hler, D. G. Georgakopoulos, C. E. Morris et al., “Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions,” Biogeosciences, vol. 5, no. 5, pp. 1425–1435, 2008.
[67]  D. E. Waturangi, “Distribution of ice nucleation-active (INA) bacteria from rain-water and air,” HAYATI Journal of Biosciences, vol. 18, no. 3, 2011.
[68]  A. L. Savvides, C. P. Andriopoulos, K. K. Kormas, D. G. Hatzinikolaou, E. A. Katsifas, and A. D. Karagouni, “Selective isolation of indigenous Pseudomonas syringae strains with ice nucleation activity properties from a ski resort,” Journal of Biological Research, vol. 15, pp. 67–73, 2011.
[69]  M. Joly, E. Attard, M. Sancelme et al., “Ice nucleation activity of bacteria isolated from cloud water,” Atmospheric Environment, vol. 70, pp. 392–400, 2013.
[70]  T. J. Near, A. Dornburg, K. L. Kuhn et al., “Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 9, pp. 3434–3439, 2012.
[71]  C. P. Garnham, A. Natarajan, A. J. Middleton, M. J. Kuiper, I. Braslavsky, and P. L. Davies, “Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging,” Biochemistry, vol. 49, no. 42, pp. 9063–9071, 2010.
[72]  K. Modig, J. Qvist, C. B. Marshall, P. L. Davies, and B. Halle, “High water mobility on the ice-binding surface of a hyperactive antifreeze protein,” Physical Chemistry Chemical Physics, vol. 12, no. 35, pp. 10189–10197, 2010.
[73]  C. P. Garnham, Y. Nishimiya, S. Tsuda, and P. L. Davies, “Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice,” FEBS Letters, vol. 586, no. 21, pp. 3876–3881, 2012.
[74]  N. Pertaya, C. B. Marshall, C. L. DiPrinzio et al., “Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces,” Biophysical Journal, vol. 92, no. 10, pp. 3663–3673, 2007.
[75]  P. W. Wilson, “Explaining thermal hysteresis by the Kelvin effect,” Cryo-Letters, vol. 14, pp. 31–36, 1993.
[76]  S. N. Patel and S. P. Graether, “Structures and ice-binding faces of the alaninerich type I antifreeze proteins,” Biochemistry and Cell Biology, vol. 88, no. 2, pp. 223–229, 2010.
[77]  Z. Jia and P. L. Davies, “Antifreeze proteins: an unusual receptor-ligand interaction,” Trends in Biochemical Sciences, vol. 27, no. 2, pp. 101–106, 2002.
[78]  Z. Jia, C. I. DeLuca, H. Chao, and P. L. Davies, “Structural basis for the binding of a globular antifreeze protein to ice,” Nature, vol. 384, no. 6606, pp. 285–288, 1996.
[79]  A. C. Doxey, M. W. Yaish, M. Griffith, and B. J. McConkey, “Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions,” Nature Biotechnology, vol. 24, no. 7, pp. 852–855, 2006.
[80]  K. K. Kandaswamy, K.-C. Chou, T. Martinetz et al., “AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties,” Journal of Theoretical Biology, vol. 270, no. 1, pp. 56–62, 2011.
[81]  A. G. Govindarajan and S. E. Lindow, “Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro,” Journal of Biological Chemistry, vol. 263, no. 19, pp. 9333–9338, 1988.
[82]  E. Sarron, N. Cochet, and P. Gadonna-Widehem, “Effects of aqueous ozone on Pseudomonas syringae viability and ice nucleating activity,” Process Biochemistry, vol. 48, no. 7, pp. 1004–1009, 2013.
[83]  F. Yu, X. Liu, Y. Tao, and K. Zhu, “High saturated fatty acids proportion in Escherichia coli enhances the activity of ice-nucleation protein from Pantoea ananatis,” FEMS Microbiology Letters, vol. 345, no. 2, pp. 141–146, 2013.
[84]  Y. Kumaki, K. Kawano, K. Hikichi, T. Matsumoto, and N. Matsushima, “A circular loop of the 16-residue repeating unit in ice nucleation protein,” Biochemical and Biophysical Research Communications, vol. 371, no. 1, pp. 5–9, 2008.
[85]  A. Hakim, J. B. Nguyen, K. Basu et al., “Crystal structure of an insect antifreeze protein and its implications for ice binding,” Journal of Biological Chemistry, 2013.
[86]  H. Kawahara, J. Li, M. Griffith, and B. R. Glick, “Relationship between antifreeze protein and freezing resistance in Pseudomonas putida GR12-2,” Current Microbiology, vol. 43, no. 5, pp. 365–370, 2001.
[87]  M. Nemecek-Marshall, R. LaDuca, and R. Fall, “High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature,” Journal of Bacteriology, vol. 175, no. 13, pp. 4062–4070, 1993.
[88]  M.-L. Chen, T.-K. Chiou, C.-Y. Tsao, and S.-T. Jiang, “Enhancement of the expression of ice-nucleation activity of Pseudomonas fluorescens MACK-4 isolated from mackerel,” Fisheries Science, vol. 69, no. 1, pp. 195–203, 2003.
[89]  S. Shivaji and J. S. S. Prakash, “How do bacteria sense and respond to low temperature?” Archives of Microbiology, vol. 192, no. 2, pp. 85–95, 2010.
[90]  J. W. Jo, B. C. Jee, J. R. Lee, and C. S. Suh, “Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence,” Fertility and Sterility, vol. 96, no. 5, pp. 1239–1245, 2011.
[91]  S. Lee, H. Koh, J. Lee, S. Kang, and H. Kim, “Cryopreservative effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells,” Applied Biochemistry and Biotechnology, vol. 167, no. 4, pp. 824–834, 2012.
[92]  K. Muldrew, J. Rewcastle, B. J. Donnelly et al., “Flounder antifreeze peptides increase the efficacy of cryosurgery,” Cryobiology, vol. 42, no. 3, pp. 182–189, 2001.
[93]  H. Koushafar and B. Rubinsky, “Effect of anti freeze proteins on frozen primary prostatic adenocarcinoma cells,” Urology, vol. 49, no. 3, pp. 421–425, 1997.
[94]  S. R. Payne and O. A. Young, “Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality,” Meat Science, vol. 41, no. 2, pp. 147–155, 1995.
[95]  R. E. Feeney and Y. Yeh, “Antifreeze proteins: current status and possible food uses,” Trends in Food Science and Technology, vol. 9, no. 3, pp. 102–106, 1998.
[96]  C. Zhang, H. Zhang, L. Wang, H. Gao, N. G. Xiao, and Y. Y. Hui, “Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation,” Journal of Agricultural and Food Chemistry, vol. 55, no. 23, pp. 9620–9626, 2007.
[97]  A. P. Esser-Kahn, V. Trang, and M. B. Francis, “Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation,” Journal of the American Chemical Society, vol. 132, no. 38, pp. 13264–13269, 2010.
[98]  H. Ohno, R. Susilo, R. Gordienko, J. Ripmeester, and V. K. Walker, “Interaction of antifreeze proteins with hydrocarbon hydrates,” Chemistry, vol. 16, no. 34, pp. 10409–10417, 2010.
[99]  J. S. Rosen, M. D. Szkutak, S. M. Jaskolka, M. S. Connolly, and K. A. Notarianni, “Engineering performance of water mist fire protection systems with antifreeze,” Journal of Fire Protection Engineering, vol. 23, no. 3, pp. 190–225, 2013.
[100]  J. Li, M. P. Izquierdo, and T.-C. Lee, “Effects of ice-nucleation active bacteria on the freezing of some model food systems,” International Journal of Food Science and Technology, vol. 32, no. 1, pp. 41–49, 1997.
[101]  M. A. A. Sarhan, “Ice nucleation protein as a bacterial surface display protein,” Archives of Biological Sciences, vol. 63, no. 4, pp. 943–948, 2011.
[102]  S. Manulis, A. Haviv-Chesner, M. T. Brandl, S. E. Lindow, and I. Barash, “Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae,” Molecular Plant-Microbe Interactions, vol. 11, no. 7, pp. 634–642, 1998.
[103]  P. B. Lindgren, R. Frederick, A. G. Govindarajan, N. J. Panopoulos, B. J. Staskawicz, and S. E. Lindow, “An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola,” EMBO Journal, vol. 8, no. 5, pp. 1291–1301, 1989.
[104]  K. Abe, S. Watabe, Y. Emori, M. Watanabe, and S. Arai, “An ice nucleation active gene of Erwinia ananas. Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity,” FEBS Letters, vol. 258, no. 2, pp. 297–300, 1989.
[105]  G. Warren and L. Corotto, “The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae,” Gene, vol. 85, no. 1, pp. 239–242, 1989.
[106]  H. Obata, N. Muryoi, H. Kawahara, K. Yamade, and J. Nishikawa, “Identification of a novel ice-nucleating bacterium of antarctic origin and its ice nucleation properties,” Cryobiology, vol. 38, no. 2, pp. 131–139, 1999.
[107]  A. Hazra, M. Saha, U. K. De, J. Mukherjee, and K. Goswami, “Study of ice nucleating characteristics of Pseudomonas aeruginosa,” Journal of Aerosol Science, vol. 35, no. 11, pp. 1405–1414, 2004.
[108]  G. Warren, L. Corotto, and P. Wolber, “Conserved repeats in diverged ice nucleation structural genes from two species of Pseudomonas,” Nucleic Acids Research, vol. 14, no. 20, pp. 8047–8060, 1986.
[109]  R. L. Green and G. J. Warren, “Physical and functional repetition in a bacterial ice nucleation gene,” Nature, vol. 317, no. 6038, pp. 645–648, 1985.
[110]  Y. Michigami, K. Abe, H. Obata, and S. Arai, “Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U),” Journal of Biochemistry, vol. 118, no. 6, pp. 1279–1284, 1995.
[111]  J. Zhao and C. S. Orser, “Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens,” Molecular and General Genetics, vol. 223, no. 1, pp. 163–166, 1990.
[112]  J. A. Raymond, C. Fritsen, and K. Shen, “An ice-binding protein from an Antarctic sea ice bacterium,” FEMS Microbiology Ecology, vol. 61, no. 2, pp. 214–221, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413