全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

Maternal Dietary Patterns during Third Trimester in Association with Birthweight Characteristics and Early Infant Growth

DOI: 10.1155/2013/786409

Full-Text   Cite this paper   Add to My Lib

Abstract:

Our analysis examined the impact of maternal dietary patterns and lifestyle factors on markers of fetal growth, specifically birthweight and size for gestational age (small- (SGA) or large-for-gestational age (LGA)). The Infant Feeding Practices Study II, a prospective cohort study, surveyed pregnant women during their 3rd trimester, of which a subgroup ( ) completed a food frequency questionnaire. Maternal dietary patterns were evaluated by diet scores (Alternative Healthy Eating Index for Pregnancy and alternate Mediterranean diet) and by carbohydrate quality (glycemic index and glycemic load). Poisson regression with robust standard errors was used to examine the relative risk of SGA and separately LGA, with dietary patterns and other lifestyle factors. Linear regression was used to determine the association of birthweight and early infant growth with better dietary patterns. Relative risk of SGA and LGA was not associated with dietary patterns. Birthweight and infant growth were not associated with maternal diet. Smoking, however, increased the risk of delivering an SGA infant (RR = 2.92, 95% CI: 1.58–5.39), while higher prepregnancy BMI increased the risk of delivering an LGA infant (RR = 1.06, 95% CI: 1.03–1.09). Future studies are needed to evaluate whether deficiencies in more specific maternal dietary nutrients play a role in fetal growth. 1. Introduction Fetal growth is an important determinant not only of infant survival but also of future chronic disease risk. Both low and high birthweight have been associated with increased infant mortality and long-term morbidity [1, 2]. Low birthweight has additionally been associated with elevated risk of type 2 diabetes [3], while high birthweight for gestational age has been associated with increased risk of overweight and obesity in adulthood [4, 5]. Due to the lifelong implications of fetal growth defined by size-at-birth, further research is needed to understand its determinants. Maternal nutrition is the major fuel for fetal growth [6]. While many studies have examined the role of individual nutrients during pregnancy [7–9], recent focus on nutritional epidemiology has shifted from examining the effect of single nutrients to assessing overall diet quality. Assessing nutrition as a dietary index may be more informative as it accounts for the combined effect of nutrients in foods [10]. In this regard, existing analyses on prenatal dietary patterns with birthweight have been scant and findings have been inconsistent [11]. As a result, further research is needed to understand the role of maternal

References

[1]  D. D. Mcintire, S. L. Bloom, B. M. Casey, and K. J. Leveno, “Birth weight in relation to morbidity and mortality among newborn infants,” The New England Journal of Medicine, vol. 340, no. 16, pp. 1234–1238, 1999.
[2]  X. Zhang, A. Decker, R. W. Platt, and M. S. Kramer, “How big is too big? The perinatal consequences of fetal macrosomia,” American Journal of Obstetrics and Gynecology, vol. 198, no. 5, pp. 517.e1–517.e6, 2008.
[3]  J.-N. Wei, F.-C. Sung, C.-Y. Li et al., “Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan,” Diabetes Care, vol. 26, no. 2, pp. 343–348, 2003.
[4]  F. Ahlsson, J. Gustafsson, T. Tuvemo, and M. Lundgren, “Females born large for gestational age have a doubled risk of giving birth to large for gestational age infants,” Acta Paediatrica, International Journal of Paediatrics, vol. 96, no. 3, pp. 358–362, 2007.
[5]  S. Cnattingius, E. Villamor, Y. T. Lagerros, A.-K. Wikstr?m, and F. Granath, “High birth weight and obesity-a vicious circle across generations,” International Journal of Obesity, vol. 36, pp. 1320–1324, 2012.
[6]  I. Cetin, C. Berti, and S. Calabrese, “Role of micronutrients in the periconceptional period,” Human Reproduction Update, vol. 16, no. 1, pp. 80–95, 2009.
[7]  K. Godfrey, S. Robinson, D. J. P. Barker, C. Osmond, and V. Cox, “Maternal nutrition in early and late pregnancy in relation to placental and fetal growth,” British Medical Journal, vol. 312, no. 7028, pp. 410–414, 1996.
[8]  T. O. Scholl, M. L. Hediger, J. I. Schall, C.-S. Khoo, and R. L. Fischer, “Dietary and serum folate: their influence on the outcome of pregnancy,” American Journal of Clinical Nutrition, vol. 63, pp. 520–525, 1996.
[9]  G. Wu, F. W. Bazer, T. A. Cudd, C. J. Meininger, and T. E. Spencer, “Maternal nutrition and fetal development,” Journal of Nutrition, vol. 134, no. 9, pp. 2169–2172, 2004.
[10]  F. B. Hu, “Dietary pattern analysis: a new direction in nutritional epidemiology,” Current Opinion in Lipidology, vol. 13, pp. 3–9, 2002.
[11]  A. Sánchez-Villegas, N. Brito, J. Doreste-Alonso et al., “Methodological aspects of the study of dietary patterns during pregnancy and maternal and infant health outcomes. A systematic review,” Maternal and Child Nutrition, vol. 6, supplement s2, pp. 100–111, 2010.
[12]  S. B. Fein, J. Labiner-Wolfe, K. R. Shealy, R. Li, J. Chen, and L. M. Grummer-Strawn, “Infant feeding practices study II: study methods,” Pediatrics, vol. 122, no. 2, pp. S28–S35, 2008.
[13]  United States Census Bureau Poverty, 2013, http://www.census.gov/hhes/www/poverty/methods/definitions.html.
[14]  E. T. Kennedy, J. Ohls, S. Carlson, and K. Fleming, “The healthy eating index: design and applications,” Journal of the American Dietetic Association, vol. 95, no. 10, pp. 1103–1108, 1995.
[15]  S. E. Chiuve, T. T. Fung, E. B. Rimm, et al., “Alternative dietary indices both strongly predict risk of chronic disease,” Journal of Nutrition, vol. 142, pp. 1009–1018, 2012.
[16]  S. L. Rifas-Shiman, J. W. Rich-Edwards, K. P. Kleinman, E. Oken, and M. W. Gillman, “Dietary quality during pregnancy varies by maternal characteristics in project viva: A US cohort,” Journal of the American Dietetic Association, vol. 109, no. 6, pp. 1004–1011, 2009.
[17]  A. Trichopoulou, T. Costacou, C. Bamia, and D. Trichopoulos, “Adherence to a Mediterranean diet and survival in a Greek population,” The New England Journal of Medicine, vol. 348, no. 26, pp. 2599–2608, 2003.
[18]  C. A. McGowan and F. M. McAuliffe, “The influence of maternal glycaemia and dietary glycaemic index on pregnancy outcome in healthy mothers,” British Journal of Nutrition, vol. 104, no. 2, pp. 153–159, 2010.
[19]  M. S. Kramer, R. W. Platt, S. W. Wen et al., “A new and improved population-based Canadian reference for birth weight for gestational age,” Pediatrics, vol. 108, no. 2, article E35, 2001.
[20]  G. Zou, “A modified poisson regression approach to prospective studies with binary data,” American Journal of Epidemiology, vol. 159, no. 7, pp. 702–706, 2004.
[21]  C. L. Rodríguez-Bernal, M. Rebagliato, C. I?iguez et al., “Diet quality in early pregnancy and its effects on fetal growth outcomes: The infancia y medio ambiente (childhood and environment) mother and child cohort study in Spain,” The American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1659–1666, 2010.
[22]  L. Chatzi, M. Mendez, R. Garcia et al., “Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother-child cohort studies,” British Journal of Nutrition, vol. 107, no. 1, pp. 135–145, 2012.
[23]  J. C. Louie, J. C. Brand-Miller, T. P. Markovic, G. P. Ross, and R. G. Moses, “Glycemic index and pregnancy: a systematic literature review,” Journal of Nutrition and Metabolism, vol. 2010, Article ID 282464, 8 pages, 2010.
[24]  P. D. Padilha, E. Accioly, C. Chagas, E. Portela, C. L. Da Silva, and C. Saunders, “Birth weight variation according to maternal characteristics and gestational weight gain in Brazilian women,” Nutricion Hospitalaria, vol. 24, no. 2, pp. 207–212, 2009.
[25]  M. I. Cedergren, “Maternal morbid obesity and the risk of adverse pregnancy outcome,” Obstetrics and Gynecology, vol. 103, no. 2, pp. 219–224, 2004.
[26]  A. A. A. M. J. Djelantik, A. E. Kunst, M. F. Van Der Wal, H. A. Smit, and T. G. M. Vrijkotte, “Contribution of overweight and obesity to the occurrence of adverse pregnancy outcomes in a multi-ethnic cohort: population attributive fractions for Amsterdam,” BJOG, vol. 119, no. 3, pp. 283–290, 2012.
[27]  I. O. Frederick, M. A. Williams, A. E. Sales, D. P. Martin, and M. Killien, “Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight,” Maternal and Child Health Journal, vol. 12, no. 5, pp. 557–567, 2008.
[28]  A. S. Khashan and L. C. Kenny, “The effects of maternal body mass index on pregnancy outcome,” European Journal of Epidemiology, vol. 24, no. 11, pp. 697–705, 2009.
[29]  D. A. Doherty, E. F. Magann, J. Francis, J. C. Morrison, and J. P. Newnham, “Pre-pregnancy body mass index and pregnancy outcomes,” International Journal of Gynecology and Obstetrics, vol. 95, no. 3, pp. 242–247, 2006.
[30]  O. G. Brooke, H. R. Anderson, J. M. Bland, J. L. Peacock, and C. M. Stewart, “Effects on birth weight of smoking, alcohol, caffeine, socioeconomic factors, and psychosocial stress,” British Medical Journal, vol. 298, no. 6676, pp. 795–801, 1989.
[31]  B. L. Horta, C. G. Victora, A. M. Menezes, R. Halpern, and F. C. Barros, “Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking,” Paediatric and Perinatal Epidemiology, vol. 11, no. 2, pp. 140–151, 1997.
[32]  N. Talai Rad, C. Ritterath, T. Siegmund et al., “Longitudinal analysis of changes in energy intake and macronutrient composition during pregnancy and 6 weeks post-partum,” Archives of Gynecology and Obstetrics, vol. 283, no. 2, pp. 185–190, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133