全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

Glial-Mediated Inflammation Underlying Parkinsonism

DOI: 10.1155/2013/357805

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interest in studying neuroimmune interactions is increasing in the scientific community, and for many researchers, immunity is becoming a crucial factor in the understanding of the physiology of the normal brain as well as the biology underlying neurodegenerative diseases. Mounting data over the last two decades point toward immune and inflammatory alterations as important mediators of the progressive dopaminergic degeneration in Parkinson’s disease. The purpose of this review is to address, under a historical perspective, as well as in the light of recent reports, the glial-mediated inflammatory and immune responses that occur in Parkinsonism. In line with this, this review also evaluates and highlights available anti-inflammatory drugs and putative targets for Parkinson’s disease therapy for the near future. 1. Introduction After many decades of research, the cause of idiopathic Parkinson’s disease (PD) remains unknown. A number of hypotheses have been put forward to explain the origin of the disease. However, the understanding of the mechanisms underlying PD remains inconclusive. The trigger of dopaminergic degeneration seems to be multifactorial and, therefore, affected by both endogenous and environmental elements. In the light of recent epidemiological, genetic, and experimental studies, inflammation and immune responses are considered as important mediators of dopaminergic degeneration. Large population studies have come to conclude that individuals taking nonsteroidal anti-inflammatory drugs (NSAIDs) have less risk of suffering idiopathic PD, which suggest that anti-inflammatory drugs may be a promising disease-modifying treatment for Parkinsonian patients [1–4]. Important genetic studies have shown an increase of polymorphisms of the human leukocyte antigen (HLA)-DR type gene in sporadic PD, indicating an immune/inflammatory-related component of the disease [5, 6]. Despite the extended basic research performed in experimental models of PD and the positive outcome of a wide range of tested anti- inflammatory drugs, the translational aspect toward a neuroimmune-modifying therapy in PD has been rather slow. In recent years, some pharmacological companies have taken steps towards the development of therapeutic programs. New trial phases have recently been started to implement anti-inflammatory treatments for the near future. There are a number of clinical trials, essentially focused on monitoring the evolution of the inflammatory response in the brain of PD patients in vivo, using potential imaging biomarkers in the course of dopaminergic

References

[1]  H. Chen, S. M. Zhang, M. A. Hernán et al., “Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease,” Archives of Neurology, vol. 60, no. 8, pp. 1059–1064, 2003.
[2]  H. Chen, E. Jacobs, M. A. Schwarzschild et al., “Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease,” Annals of Neurology, vol. 58, no. 6, pp. 963–967, 2005.
[3]  J. H. Bower, D. M. Maraganore, B. J. Peterson, J. E. Ahlskog, and W. A. Rocca, “Immunologic diseases, anti-inflammatory drugs, and Parkinson disease: a case-control study,” Neurology, vol. 67, no. 3, pp. 494–496, 2006.
[4]  J. J. Gagne and M. C. Power, “Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis,” Neurology, vol. 74, no. 12, pp. 995–1002, 2010.
[5]  T. H. Hamza, C. P. Zabetian, A. Tenesa et al., “Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease,” Nature genetics, vol. 42, no. 9, pp. 781–785, 2010.
[6]  T. H. Hamza and H. Payami, “The heritability of risk and age at onset of Parkinson's disease after accounting for known genetic risk factors,” Journal of Human Genetics, vol. 55, no. 4, pp. 241–243, 2010.
[7]  E. F. Buzzard, “Encephalitis lethargica,” Proceedings of the Royal Society of Medicine, vol. 12, pp. 56–64, 1919.
[8]  S. Bojinov, “Encephalitis with acute Parkinsonian syndrome and bilateral inflammatory necrosis of the substantia nigra,” Journal of the Neurological Sciences, vol. 12, no. 4, pp. 383–415, 1971.
[9]  R. C. Dale, A. J. Church, R. A. H. Surtees et al., “Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity,” Brain, vol. 127, no. 1, pp. 21–33, 2004.
[10]  D. Rail, C. Scholtz, and M. Swash, “Post-encephalitic Parkinsonism: current experience,” Journal of Neurology Neurosurgery and Psychiatry, vol. 44, no. 8, pp. 670–676, 1981.
[11]  S. Bojinov and T. Guentchev, “Acute encephalitis and myocarditis in a 4 and a half year old infant. (Acute Parkinson syndrome with regressive clinical evolution. Severe myocarditis and bilateral symmetric necrotic inflammation of the locus niger),” Neuropatologia Polska, vol. 4, pp. 655–658, 1966.
[12]  Y. Kawaoka, “H5N1: flu transmission work is urgent,” Nature, vol. 482, no. 7384, p. 155, 2012.
[13]  J. Henry, R. J. Smeyne, H. Jang, B. Miller, and M. S. Okun, “Parkinsonism and neurological manifestations of influenza throughout the 20th and 21st centuries,” Parkinsonism and Related Disorders, vol. 16, no. 9, pp. 566–571, 2010.
[14]  H. Jang, D. Boltz, K. Sturm-Ramirez et al., “Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14063–14068, 2009.
[15]  O. W. Sacks, M. Kohl, W. Schwartz, and C. Messeloff, “Side-effects of L-dopa in postencephalic parkinsonism.,” The Lancet, vol. 1, no. 7654, p. 1006, 1970.
[16]  E. T. Gamboa, A. Wolf, and M. D. Yahr, “Influenza virus antigen in postencephalitic Parkinsonism brain. Detection by immunofluorescence,” Archives of Neurology, vol. 31, no. 4, pp. 228–232, 1974.
[17]  P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988.
[18]  J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan, and D. Karluk, “Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure,” Annals of Neurology, vol. 46, no. 4, Article ID 105140, pp. 598–605, 1999.
[19]  J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, “Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, no. 4587, pp. 979–980, 1983.
[20]  P. A. Ballard, J. W. Tetrud, and J. W. Langston, “Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases,” Neurology, vol. 35, no. 7, pp. 949–956, 1985.
[21]  P. L. McGeer, C. Schwab, A. Parent, and D. Doudet, “Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration,” Annals of Neurology, vol. 54, no. 5, pp. 599–604, 2003.
[22]  C. Barcia, A. Sánchez Bahillo, E. Fernández-Villalba et al., “Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure,” Glia, vol. 46, no. 4, pp. 402–409, 2004.
[23]  C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms Underlying Inflammation in Neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010.
[24]  M. Sawada, H. Sawada, and T. Nagatsu, “Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases,” Neurodegenerative Diseases, vol. 5, no. 3-4, pp. 254–256, 2008.
[25]  Y. S. Kim and T. H. Joh, “Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease,” Experimental and Molecular Medicine, vol. 38, no. 4, pp. 333–347, 2006.
[26]  Y. Ouchi, E. Yoshikawa, Y. Sekine et al., “Microglial activation and dopamine terminal loss in early Parkinson's disease,” Annals of Neurology, vol. 57, no. 2, pp. 168–175, 2005.
[27]  A. Gerhard, N. Pavese, G. Hotton et al., “In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease,” Neurobiology of Disease, vol. 21, no. 2, pp. 404–412, 2006.
[28]  M. Vázquez-Claverie, P. Garrido-Gil, W. San Sebastián et al., “Acute and chronic 1-Methyl-4-Phenyl-1,2,3,6-tetrahydropyridine administrations elicit similar microglial activation in the substantia nigra of monkeys,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 9, pp. 977–984, 2009.
[29]  V. Brochard, B. Combadière, A. Prigent et al., “Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 182–192, 2009.
[30]  I. Kurkowska-Jastrz?bska, A. Wrońska, M. Kohutnicka, A. Cz?onkowski, and A. Cz?onkowska, “MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson's disease,” Acta Neurobiologiae Experimentalis, vol. 59, no. 1, pp. 1–8, 1999.
[31]  M. Tremblay, B. Stevens, A. Sierra, H. Wake, A. Bessis, and A. Nimmerjahn, “The role of microglia in the healthy brain,” Journal of Neuroscience, vol. 31, no. 45, pp. 16064–16069, 2011.
[32]  A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005.
[33]  D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005.
[34]  S. E. Haynes, G. Hollopeter, G. Yang et al., “The P2Y12 receptor regulates microglial activation by extracellular nucleotides,” Nature Neuroscience, vol. 9, no. 12, pp. 1512–1519, 2006.
[35]  S. Koizumi, Y. Shigemoto-Mogami, K. Nasu-Tada et al., “UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis,” Nature, vol. 446, no. 7139, pp. 1091–1095, 2007.
[36]  D. Sieger, C. Moritz, T. Ziegenhals, S. Prykhozhij, and F. Peri, “Long-range ca2+ waves transmit brain-damage signals to microglia,” Developmental Cell, vol. 22, no. 6, pp. 1138–1148, 2012.
[37]  J. Koenigsknecht-Talboo and G. E. Landreth, “Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines,” Journal of Neuroscience, vol. 25, no. 36, pp. 8240–8249, 2005.
[38]  A. Majumdar, D. Cruz, N. Asamoah et al., “Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils,” Molecular Biology of the Cell, vol. 18, no. 4, pp. 1490–1496, 2007.
[39]  T. Ueyama, M. E. Lennartz, Y. Noda et al., “Superoxide production at phagosomal cup/phagosome through βI protein kinase C during FcγR-mediated phagocytosis in microglia,” Journal of Immunology, vol. 173, no. 7, pp. 4582–4589, 2004.
[40]  F. Peri and C. Nüsslein-Volhard, “Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo,” Cell, vol. 133, no. 5, pp. 916–927, 2008.
[41]  A. Sierra, J. M. Encinas, J. J. P. Deudero et al., “Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis,” Cell Stem Cell, vol. 7, no. 4, pp. 483–495, 2010.
[42]  C. Barcia, C. M. Ros, V. Annese, M. A. Carrillo-de Sauvage, F. Ros-Bernal, A. Gomez, et al., “ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo,” Scientific Reports, vol. 2, Article ID 231398, p. 809, 2012.
[43]  P. Teismann, K. Tieu, O. Cohen, D. K. Choi, D. C. Wu, D. Marks, et al., “Pathogenic role of glial cells in Parkinson's disease,” Movement Disorders, vol. 18, no. 2, Article ID 125392, pp. 121–129, 2003.
[44]  J. L. Ridet, S. K. Malhotra, A. Privat, and F. H. Gage, “Reactive astrocytes: cellular and molecular cues to biological function,” Trends in Neurosciences, vol. 20, no. 12, pp. 570–577, 1997.
[45]  J. W. Fawcett and R. A. Asher, “The glial scar and central nervous system repair,” Brain Research Bulletin, vol. 49, no. 6, pp. 377–391, 1999.
[46]  C. Escartin and G. Bonvento, “Targeted activation of astrocytes: a potential neuroprotective strategy,” Molecular Neurobiology, vol. 38, no. 3, pp. 231–241, 2008.
[47]  J. Silver and J. H. Miller, “Regeneration beyond the glial scar,” Nature Reviews Neuroscience, vol. 5, no. 2, pp. 146–156.
[48]  M. E. Hamby and M. V. Sofroniew, “Reactive astrocytes as therapeutic targets for CNS disorders,” Neurotherapeutics, vol. 7, no. 4, pp. 494–506, 2010.
[49]  L. S. Forno, L. E. DeLanney, I. Irwin, D. Di Monti, and J. W. Langston, “Astrocytes and Parkinson's disease,” Progress in Brain Research, vol. 94, pp. 429–436, 1992.
[50]  P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, and F. Javoy-Agid, “Glutathione peroxidase, glial cells and Parkinson's disease,” Neuroscience, vol. 52, no. 1, pp. 1–6, 1993.
[51]  G. S. V. Campanella, A. M. Tager, J. K. El Khoury et al., “Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4814–4819, 2008.
[52]  T. S. Elizan and J. Casals, “Astrogliosis in von Economo's and postencephalitic Parkinson's diseases supports probable viral etiology,” Journal of the Neurological Sciences, vol. 105, no. 2, pp. 131–134, 1991.
[53]  C. Schachtrup, N. Le Moan, M. A. Passino, and K. Akassoglou, “Hepatic stellate cells and astrocytes: Stars of scar formation and tissue repair,” Cell Cycle, vol. 10, no. 11, pp. 1764–1771, 2011.
[54]  E. C. Hirsch, S. Hunot, P. Damier, and B. Faucheux, “Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration?” Annals of Neurology, vol. 44, no. 3, pp. S115–S120, 1998.
[55]  L. Chen, K. Yung, and Y. Chan, “Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's disease,” Current Drug Targets, vol. 6, no. 7, pp. 821–833, 2005.
[56]  L.-F. H. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, vol. 260, no. 5111, pp. 1130–1132, 1993.
[57]  J. H. Kordower, M. E. Emborg, J. Bloch et al., “Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease,” Science, vol. 290, no. 5492, pp. 767–773, 2000.
[58]  S. B. Rangasamy, K. Soderstrom, R. A. E. Bakay, and J. H. Kordower, “Neurotrophic factor therapy for Parkinson's disease,” Progress in Brain Research, vol. 184, pp. 237–264, 2010.
[59]  C. E. Reilly, “Glial cell line-derived neurotrophic factor (GDNF) prevents neurodegeneration in models of Parkinson's disease,” Journal of Neurology, vol. 248, no. 1, pp. 76–78, 2001.
[60]  A. Eslamboli, B. Georgievska, R. M. Ridley et al., “Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease,” Journal of Neuroscience, vol. 25, no. 4, pp. 769–777, 2005.
[61]  F. Zafra, D. Lindholm, E. Castren, J. Hartikka, and H. Thoenen, “Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes,” Journal of Neuroscience, vol. 12, no. 12, pp. 4793–4799, 1992.
[62]  K. D. Dougherty, C. F. Dreyfus, and I. B. Black, “Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury,” Neurobiology of Disease, vol. 7, no. 6, pp. 574–585, 2000.
[63]  M. J. Henderson, C. T. Richie, M. Airavaara, Y. Wang, and B. K. Harvey, “Mesencephalic astrocyte-derived neurotrophic factor (MANF) secretion and cell surface binding are modulated by KDEL receptors,” The Journal of Biological Chemistry, vol. 288, no. 6, Article ID 232556, pp. 4209–4225, 2013.
[64]  P. Teismann and J. B. Schulz, “Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation,” Cell and Tissue Research, vol. 318, no. 1, pp. 149–161, 2004.
[65]  I. Y. Chung and E. N. Benveniste, “Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-γ, and IL-1 β,” The Journal of Immunology, vol. 144, no. 8, Article ID 210900, pp. 2999–3007, 1990.
[66]  A. P. Lieberman, P. M. Pitha, H. S. Shin, and M. L. Shin, “Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 16, pp. 6348–6352, 1989.
[67]  I. M. Medana, N. H. Hunt, and G. Chaudhri, “Tumor necrosis factor-α expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes,” American Journal of Pathology, vol. 150, no. 4, pp. 1473–1486, 1997.
[68]  A. P. Lieberman, P. M. Pitha, and M. L. Shin, “Protein kinase regulates tumor necrosis factor mRNA stability in virus-stimulated astrocytes,” The Journal of Experimental Medicine, vol. 172, no. 3, Article ID 238804, pp. 989–992, 1990.
[69]  M. Pickering, D. Cumiskey, and J. J. O'Connor, “Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system,” Experimental Physiology, vol. 90, no. 5, pp. 663–670, 2005.
[70]  D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-α,” Nature, vol. 440, no. 7087, pp. 1054–1059, 2006.
[71]  M. A. Carrillo-de Sauvage, A. Gómez, C. M. Ros et al., “CCL2-Expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo,” PLoS ONE, vol. 7, no. 2, Article ID e30762, 2012.
[72]  A. E. Cardona, P. A. Gonzalez, and J. M. Teale, “CC chemokines mediate leukocyte trafficking into the central nervous system during murine neurocysticercosis: role of γδ T cells in amplification of the host immune response,” Infection and Immunity, vol. 71, no. 5, pp. 2634–2642, 2003.
[73]  J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, et al., “A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes including amyloid β,” Science Translational Medicine, vol. 4, no. 147, Article ID 228966, 2012.
[74]  G. M. Halliday and C. H. Stevens, “Glia: initiators and progressors of pathology in Parkinson's disease,” Movement Disorders, vol. 26, no. 1, pp. 6–17, 2011.
[75]  R. J. M. Franklin and C. Ffrench-Constant, “Remyelination in the CNS: from biology to therapy,” Nature Reviews Neuroscience, vol. 9, no. 11, pp. 839–855, 2008.
[76]  T. Yamada, P. L. McGeer, and E. G. McGeer, “Relationship of complement-activated oligodendrocytes to reactive microglia and neuronal pathology in neurodegenerative disease,” Dementia, vol. 2, no. 2, pp. 71–77, 1991.
[77]  K. Wakabayashi, S. Hayashi, M. Yoshimoto, H. Kudo, and H. Takahashi, “NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains,” Acta Neuropathologica, vol. 99, no. 1, pp. 14–20, 2000.
[78]  J. A. Cochiolo, R. Ehsanian, and D. K. Bruck, “Acute ultrastructural effects of MPTP on the nigrostriatal pathway of the C57BL/6 adult mouse: evidence of compensatory plasticity in nigrostriatal neurons,” Journal of Neuroscience Research, vol. 59, no. 1, Article ID 106581, pp. 126–135, 2000.
[79]  V. Annese, C. Barcia, F. Ros-Bernal, A. Gomez, C. M. Ros, V. De Pablos, et al., “Evidence of oligodendrogliosis in MPTP-induced Parkinsonism,” Neuropathology and Applied Neurobiology, Article ID 224434, 2012.
[80]  M. Mogi, M. Harada, P. Riederer, H. Narabayashi, K. Fujita, and T. Nagatsu, “Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients,” Neuroscience Letters, vol. 165, no. 1-2, pp. 208–210, 1994.
[81]  J. W. Larrick and S. C. Wright, “Cytotoxic mechanism of tumor necrosis factor-α,” The FASEB Journal, vol. 4, no. 14, Article ID 217206, pp. 3215–3223, 1990.
[82]  B. Beutler and C. Van Huffel, “Unraveling function in the TNF ligand and receptor families,” Science, vol. 264, no. 5159, p. 667, 1994.
[83]  G. Boka, P. Anglade, D. Wallach, F. Javoy-Agid, Y. Agid, and E. C. Hirsch, “Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease,” Neuroscience Letters, vol. 172, no. 1-2, pp. 151–154, 1994.
[84]  K. Sriram, J. M. Matheson, S. A. Benkovic, D. B. Miller, M. I. Luster, and J. P. O'Callaghan, “Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease.,” The FASEB Journal, vol. 16, no. 11, pp. 1474–1476, 2002.
[85]  B. Ferger, A. Leng, A. Mura, B. Hengerer, and J. Feldon, “Genetic ablation of tumor necrosis factor-alpha (TNF-α) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum,” Journal of Neurochemistry, vol. 89, no. 4, pp. 822–833, 2004.
[86]  A. L. De Lella Ezcurra, M. Chertoff, C. Ferrari, M. Graciarena, and F. Pitossi, “Chronic expression of low levels of tumor necrosis factor-α in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation,” Neurobiology of Disease, vol. 37, no. 3, pp. 630–640, 2010.
[87]  C. Barcia, V. De Pablos, V. Bautista-Hernández et al., “Increased plasma levels of TNF-α but not of IL1-β in MPTP-treated monkeys one year after the MPTP administration,” Parkinsonism and Related Disorders, vol. 11, no. 7, pp. 435–439, 2005.
[88]  C. Barcia, C. M. Ros, V. Annese, A. Gomez, F. Ros-Bernal, D. Aguado-Yera, et al., “IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease,” Cell Death & Disease, vol. 2, no. 4, p. e142, 2011.
[89]  M. P. Mount, A. Lira, D. Grimes et al., “Involvement of interferon-γ in microglial-mediated loss of dopaminergic neurons,” Journal of Neuroscience, vol. 27, no. 12, pp. 3328–3337, 2007.
[90]  M. Mogi, M. Harada, T. Kondob et al., “Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients,” Neuroscience Letters, vol. 180, no. 2, pp. 147–150, 1994.
[91]  D. Blum-Degena, T. Müller, W. Kuhn, M. Gerlach, H. Przuntek, and P. Riederer, “Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients,” Neuroscience Letters, vol. 202, no. 1-2, pp. 17–20, 1995.
[92]  M. Mogi, M. Harada, H. Narabayashi, H. Inagaki, M. Minami, and T. Nagatsu, “Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease,” Neuroscience Letters, vol. 211, no. 1, pp. 13–16, 1996.
[93]  G. Stypula, J. Kunert-Radek, H. Stepien, K. Zylinska, and M. Pawlikowski, “Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson's disease,” Neuroimmunomodulation, vol. 3, no. 2-3, Article ID 894572, pp. 131–134, 1996.
[94]  S. C. Lee, D. W. Dickson, and C. F. Brosnan, “Interleukin-1, nitric oxide and reactive astrocytes,” Brain, Behavior, and Immunity, vol. 9, no. 4, pp. 345–354, 1995.
[95]  I. Kurkowska-Jastrzebska, E. Ba?kowiec-Iskra, A. Ciesielska et al., “Decreased inflammation and augmented expression of trophic factors correlate with MOG-induced neuroprotection of the injured nigrostriatal system in the murine MPTP model of Parkinson's disease,” International Immunopharmacology, vol. 9, no. 6, pp. 781–791, 2009.
[96]  D. W. Luchtman, D. Shao, and C. Song, “Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease,” Physiology and Behavior, vol. 98, no. 1-2, pp. 130–138, 2009.
[97]  G. Hébert, J. Arsaut, R. Dantzer, and J. Demotes-Mainard, “Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin,” Neuroscience Letters, vol. 349, no. 3, pp. 191–195, 2003.
[98]  M. C. P. Godoy, R. Tarelli, C. C. Ferrari, M. I. Sarchi, and F. J. Pitossi, “Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease,” Brain, vol. 131, no. 7, pp. 1880–1894, 2008.
[99]  M. C. P. Godoy, C. C. Ferrari, and F. J. Pitossi, “Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression,” Journal of Neuroimmunology, vol. 222, no. 1-2, pp. 29–39, 2010.
[100]  D. A. Gayle, Z. Ling, C. Tong, T. Landers, J. W. Lipton, and P. M. Carvey, “Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: Roles of tumor necrosis factor-α, interleukin-1β, and nitric oxide,” Developmental Brain Research, vol. 133, no. 1, pp. 27–35, 2002.
[101]  A. J. Herrera, A. Casta?o, J. L. Venero, J. Cano, and A. Machado, “The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system,” Neurobiology of Disease, vol. 7, no. 4, pp. 429–447, 2000.
[102]  W. Kim, R. P. Mohney, B. Wilson, G. Jeohn, B. Liu, and J. Hong, “Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia,” Journal of Neuroscience, vol. 20, no. 16, pp. 6309–6316, 2000.
[103]  H. Gao, B. Liu, W. Zhang, and J. Hong, “Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease,” The FASEB Journal, vol. 17, no. 13, 2003.
[104]  B. Zhao and J. P. Schwartz, “Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives,” Journal of Neuroscience Research, vol. 52, no. 1, pp. 7–16, 1998.
[105]  E. C. Hirsch, T. Breidert, E. Rousselet, S. Hunot, A. Hartmann, and P. P. Michel, “The role of glial reaction and inflammation in Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 991, pp. 214–228, 2003.
[106]  A. Hartmann, S. Hunot, and E. C. Hirsch, “Inflammation and dopaminergic neuronal loss in Parkinson's disease: a complex matter,” Experimental Neurology, vol. 184, no. 2, pp. 561–564, 2003.
[107]  M. Kopf, M. F. Bachmann, and B. J. Marsland, “Averting inflammation by targeting the cytokine environment,” Nature Reviews Drug Discovery, vol. 9, no. 9, pp. 703–718, 2010.
[108]  C. Barcia, F. Ros, M. A. Carrillo et al., “Inflammatory response in parkinsonism,” Journal of Neural Transmission, no. 73, pp. 245–252, 2009.
[109]  B. Safieh-Garabedian, J. J. Haddad, and N. E. Saadé, “Cytokines in central nervous system: targets for therapeutic intervention,” Current Drug Targets, vol. 3, no. 4, pp. 271–280, 2004.
[110]  C. X. Wang and A. Shuaib, “Involvement of inflammatory cytokines in central nervous system injury,” Progress in Neurobiology, vol. 67, no. 2, pp. 161–172, 2002.
[111]  K. Saijo, B. Winner, C. T. Carson et al., “A nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death,” Cell, vol. 137, no. 1, pp. 47–59, 2009.
[112]  L. J. Van Eldik, W. L. Thompson, H. R. Ranaivo, H. A. Behanna, and D. Martin Watterson, “Glia proinflammatory cytokine upregulation as a therapeutic target for Neurodegenerative diseases: function-based and target-based discovery approaches,” International Review of Neurobiology, vol. 82, pp. 277–296, 2007.
[113]  C. Schwab and P. L. McGeer, “Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 359–369, 2008.
[114]  C. Bogdan and U. Schleicher, “Production of interferon-γ by myeloid cells—fact or fancy?” Trends in Immunology, vol. 27, no. 6, pp. 282–290, 2006.
[115]  U. Fiszer, E. Mix, S. Fredrikson, V. Kostulas, and H. Link, “Parkinson's disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood,” Acta Neurologica Scandinavica, vol. 90, no. 3, pp. 160–166, 1994.
[116]  U. Fiszer, E. Mix, S. Fredrikson, V. Kostulas, T. Olsson, and H. Link, “γδ+ T cells are increased in patients with Parkinson's disease,” Journal of the Neurological Sciences, vol. 121, no. 1, pp. 39–45, 1994.
[117]  J. Bas, M. Calopa, M. Mestre et al., “Lymphocyte populations in Parkinson's disease and in rat models of parkinsonism,” Journal of Neuroimmunology, vol. 113, no. 1, pp. 146–152, 2001.
[118]  K. Hisanaga, M. Asagi, Y. Itoyama, and Y. Iwasaki, “Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease,” Archives of Neurology, vol. 58, no. 10, pp. 1580–1583, 2001.
[119]  S. H. Appel, D. R. Beers, and J. S. Henkel, “T cell-microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis: are we listening?” Trends in Immunology, vol. 31, no. 1, pp. 7–17, 2010.
[120]  A. D. Reynolds, D. K. Stone, J. A. L. Hutter, E. J. Benner, R. L. Mosley, and H. E. Gendelman, “Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson's disease,” Journal of Immunology, vol. 184, no. 5, pp. 2261–2271, 2010.
[121]  C. Laurie, A. Reynolds, O. Coskun, E. Bowman, H. E. Gendelman, and R. L. Mosley, “CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease,” Journal of Neuroimmunology, vol. 183, no. 1-2, pp. 60–68, 2007.
[122]  E. J. Benner, R. L. Mosley, C. J. Destache et al., “Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9435–9440, 2004.
[123]  P. Bongioanni, M. Castagna, S. Maltinti, B. Boccardi, and F. Dadone, “T-lymphocyte tumor necrosis factor-α receptor binding in patients with Parkinson's disease,” Journal of the Neurological Sciences, vol. 149, no. 1, pp. 41–45, 1997.
[124]  P. Bongioanni, C. Mondino, M. Borgna, B. Boccardi, R. Sposito, and M. Castagna, “T-lymphocyte immuno-interferon binding in parkinsonian patients,” Journal of Neural Transmission, vol. 104, no. 2-3, pp. 199–207, 1997.
[125]  N. Aubin, O. Curet, A. Deffois, and C. Carter, “Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice,” Journal of Neurochemistry, vol. 71, no. 4, pp. 1635–1642, 1998.
[126]  D. Casper, U. Yaparpalvi, N. Rempel, and P. Werner, “Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro,” Neuroscience Letters, vol. 289, no. 3, pp. 201–204, 2000.
[127]  P. Teismann and B. Ferger, “Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease,” Synapse, vol. 39, no. 2, pp. 167–174, 2001.
[128]  X. Gao, H. Chen, M. A. Schwarzschild, and A. Ascherio, “Use of ibuprofen and risk of Parkinson disease,” Neurology, vol. 76, no. 10, pp. 863–869, 2011.
[129]  A. Samii, M. Etminan, M. O. Wiens, and S. Jafari, “NSAID use and the risk of parkinsons disease: systematic review and meta-analysis of observational studies,” Drugs and Aging, vol. 26, no. 9, pp. 769–779, 2009.
[130]  Z.-H. Feng, T.-G. Wang, D.-D. Li et al., “Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra,” Neuroscience Letters, vol. 329, no. 3, pp. 354–358, 2002.
[131]  P. Teismann, M. Vila, D.-K. Choi et al., “COX-2 and neurodegeneration in Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 991, pp. 272–277, 2003.
[132]  E. Carrasco, D. Casper, and P. Werner, “Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity,” Journal of Neuroscience Research, vol. 81, no. 1, pp. 121–131, 2005.
[133]  S. Phani, J. D. Loike, and S. Przedborskia, “Neurodegeneration and inflammation in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 18, no. 1, pp. S207–S209, 2012.
[134]  R. Sánchez-Pernaute, A. Ferree, O. Cooper, M. Yu, A. Brownell, and O. Isacson, “Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease,” Journal of Neuroinflammation, vol. 1, article 6, 2004.
[135]  Z. Feng, D. Li, P. C. W. Fung, Z. Pei, D. B. Ramsden, and S. Ho, “COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice,” NeuroReport, vol. 14, no. 15, pp. 1927–1929, 2003.
[136]  E. Esposito, V. Di Matteo, A. Benigno, M. Pierucci, G. Crescimanno, and G. Di Giovanni, “Non-steroidal anti-inflammatory drugs in Parkinson's disease,” Experimental Neurology, vol. 205, no. 2, pp. 295–312, 2007.
[137]  B. Villar-Cheda, A. Dominguez-Meijide, B. Joglar, A. I. Rodriguez-Perez, M. J. Guerra, and J. L. Labandeira-Garcia, “Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors,” Neurobiology of Disease, vol. 47, no. 2, pp. 268–279, 2012.
[138]  L. Tonges, T. Frank, L. Tatenhorst, K. A. Saal, J. C. Koch, E. M. Szego, et al., “Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease,” Brain, vol. 135, Article ID 230870, pp. 3355–3370, 2012.
[139]  E. C. Hirsch, S. Vyas, and S. Hunot, “Neuroinflammation in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 18, no. 1, pp. S210–S212, 2012.
[140]  F. Ros-Bernal, S. Hunot, M. T. Herrero et al., “Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 16, pp. 6632–6637, 2011.
[141]  M. Mizobuchi, T. Hineno, Y. Kakimoto, and K. Hiratani, “Increase of plasma adrenocorticotrophin and cortisol in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated dogs,” Brain Research, vol. 612, no. 1-2, pp. 319–321, 1993.
[142]  C. Barcia, V. Bautista, A. Sánchez-Bahillo et al., “Circadian determinations of cortisol, prolactin and melatonin in chronic methyl-phenyl-tetrahydropyridine-treated monkeys,” Neuroendocrinology, vol. 78, no. 2, pp. 118–128, 2003.
[143]  T. Müller, J. Welnic, and S. Muhlack, “Acute levodopa administration reduces cortisol release in patients with Parkinson's disease,” Journal of Neural Transmission, vol. 114, no. 3, pp. 347–350, 2007.
[144]  M. C. Morale, P. A. Serra, M. R. Delogu et al., “Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide.,” The FASEB Journal, vol. 18, no. 1, pp. 164–166, 2004.
[145]  J. Du, Y. Wang, R. Hunter, Y. Wei, R. Blumenthal, C. Falke, et al., “Dynamic regulation of mitochondrial function by glucocorticoids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3543–3548, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413