全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Epidemiology of Sleep Quality, Sleep Patterns, Consumption of Caffeinated Beverages, and Khat Use among Ethiopian College Students

DOI: 10.1155/2012/583510

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To evaluate sleep habits, sleep patterns, and sleep quality among Ethiopian college students; and to examine associations of poor sleep quality with consumption of caffeinated beverages and other stimulants. Methods. A total of 2,230 undergraduate students completed a self-administered comprehensive questionnaire which gathered information about sleep complaints, sociodemographic and lifestyle characteristics,and theuse of caffeinated beverages and khat. We used multivariable logistic regression procedures to estimate odds ratios for the associations of poor sleep quality with sociodemographic and behavioral factors. Results. Overall 52.7% of students were classified as having poor sleep quality (51.8% among males and 56.9% among females). In adjusted multivariate analyses, caffeine consumption ( ; 95% CI: 1.25–1.92), cigarette smoking ( ; 95% CI: 1.06–2.63), and khat use ( , 95% CI: 1.09–2.71) were all associated with increased odds of long-sleep latency (>30 minutes). Cigarette smoking ( ; 95% CI: 1.11–2.73) and khat consumption ( ; 95% CI: 1.22–3.00) were also significantly associated with poor sleep efficiency (<85%), as well as with increased use of sleep medicine. Conclusion. Findings from the present study demonstrate the high prevalence of poor sleep quality and its association with stimulant use among college students. Preventive and educational programs for students should include modules that emphasize the importance of sleep and associated risk factors. 1. Introduction Sleep is important for maintaining good physical, mental, and emotional health [1]. Short sleep duration (generally defined as less than 7 hours) increases rates of mortality and has been reported as an important risk factor for adverse cardiovascular, endocrine, immune, and nervous system outcomes, such as obesity among adults and children, diabetes and impaired glucose tolerance, cardiovascular disease and hypertension, mood and anxiety disorders, and substance abuse [2–7]. Although there is a well-established body of evidence that has evaluated sleep among adults and children, few have investigated the prevalence and influences of poor sleep among younger, college-aged students. Furthermore, there is limited research on the influences of caffeine and the consumption of other stimulants on sleep duration and sleep quality among college-aged students and young adults. Caffeine, the most widely used drug in the world [8], is believed to influence the performance and mental state by lack or loss of sleep [9, 10]. Some studies have reported that caffeine is beneficial

References

[1]  H. R. Colten, B. M. Altevogt, Institute of Medicine, and Committee on Sleep M, Research: Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem, Institute of Medicine: National Academies Press, Washington, DC, USA, 2006.
[2]  J. P. Chaput, J. P. Després, C. Bouchard, and A. Tremblay, “Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Québec family study,” Obesity, vol. 15, no. 1, pp. 253–261, 2007.
[3]  L. M. Forquer, A. E. Camden, K. M. Gabriau, and C. M. Johnson, “Sleep patterns of college students at a public university,” Journal of American College Health, vol. 56, no. 5, pp. 563–565, 2008.
[4]  K. L. Knutson, E. Van Cauter, P. J. Rathouz et al., “Association between sleep and blood pressure in midlife: the CARDIA sleep study,” Archives of Internal Medicine, vol. 169, no. 11, pp. 1055–1061, 2009.
[5]  D. Koren, I. Arnon, P. Lavie, and E. Klein, “Sleep complaints as early predictors of posttraumatic stress disorder: a 1-year prospective study of injured survivors of motor vehicle accidents,” American Journal of Psychiatry, vol. 159, no. 5, pp. 855–857, 2002.
[6]  D. F. Kripke, L. Garfinkel, D. L. Wingard, M. R. Klauber, and M. R. Marler, “Mortality associated with sleep duration and insomnia,” Archives of General Psychiatry, vol. 59, no. 2, pp. 131–136, 2002.
[7]  P. Meerlo, A. Sgoifo, and D. Suchecki, “Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity,” Sleep Medicine Reviews, vol. 12, no. 3, pp. 197–210, 2008.
[8]  J. Snel and M. M. Lorist, “Effects of caffeine on sleep and cognition,” Progress in Brain Research, vol. 190, pp. 105–117, 2011.
[9]  J. E. James and M. A. Keane, “Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal,” Human Psychopharmacology, vol. 22, no. 8, pp. 549–558, 2007.
[10]  J. E. James and P. J. Rogers, “Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation,” Psychopharmacology, vol. 182, no. 1, pp. 1–8, 2005.
[11]  M. J. Glade, “Caffeine-Not just a stimulant,” Nutrition, vol. 26, no. 10, pp. 932–938, 2010.
[12]  A. B. Ludden and A. R. Wolfson, “Understanding adolescent caffeine use: connecting use patterns with expectancies, reasons, and sleep,” Health Education and Behavior, vol. 37, no. 3, pp. 330–342, 2010.
[13]  A. L. Kristjansson, I. D. Sigfusdottir, J. P. Allegrante, and J. E. James, “Adolescent caffeine consumption, daytime sleepiness, and anger,” Journal of Caffeine Research, vol. 1, no. 1, pp. 75–82, 2011.
[14]  P. Kalix, “Khat: scientific knowledge and policy issues,” British Journal of Addiction, vol. 82, no. 1, pp. 47–53, 1987.
[15]  M. Belew, D. Kebede, M. Kassaye, and F. Enquoselassie, “The magnitude of khat use and its association with health, nutrition and socio-economic status,” Ethiopian Medical Journal, vol. 38, no. 1, pp. 11–26, 2000.
[16]  D. J. Buysse, C. F. Reynolds, T. H. Monk, S. R. Berman, and D. J. Kupfer, “The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research,” Psychiatry Research, vol. 28, no. 2, pp. 193–213, 1989.
[17]  O. O. Aloba, A. O. Adewuya, B. A. Ola, and B. M. Mapayi, “Validity of the Pittsburgh Sleep Quality Index (PSQI) among Nigerian university students,” Sleep Medicine, vol. 8, no. 3, pp. 266–270, 2007.
[18]  WHO, Expert Committee on Physical Status: The Use and Interpretation of Anthropometry, WHO, Geneva, Switzerland, 1995.
[19]  M. S. Freiberg, H. J. Cabral, T. C. Heeren, R. S. Vasan, and R. C. Ellison, “Alcohol consumption and the prevalence of the metabolic syndrome in the U.S. A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey,” Diabetes Care, vol. 27, no. 12, pp. 2954–2959, 2004.
[20]  WHO, Global Status Report on Alcohol, World Health Organization. Department of Mental Health and Substance Abuse, Geneva, Switzerland, 2004.
[21]  K. J. Rothman, S. Greenland, and T. L. Lash, Modern Epidemiology, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2008.
[22]  W. Buboltz, S. M. Jenkins, B. Soper, K. Woller, P. Johnson, and T. Faes, “Sleep habits and patterns of college students: an expanded study,” Journal of College Counseling, vol. 12, no. 2, pp. 113–124, 2009.
[23]  A. Steptoe, V. Peacey, and J. Wardle, “Sleep duration and health in young adults,” Archives of Internal Medicine, vol. 166, no. 16, pp. 1689–1692, 2006.
[24]  D. J. Taylor and A. D. Bramoweth, “Patterns and consequences of inadequate sleep in College Students: substance use and motor vehicle accidents,” Journal of Adolescent Health, vol. 46, no. 6, pp. 610–612, 2010.
[25]  S. H. Cheng, C. C. Shih, I. H. Lee et al., “A study on the sleep quality of incoming university students,” Psychiatry Research, vol. 197, no. 3, pp. 270–274, 2012.
[26]  L. K. P. Suen, L. K. Ellis Hon, and W. W. S. Tam, “Association between sleep behavior and sleep-related factors among university students in Hong Kong,” Chronobiology International, vol. 25, no. 5, pp. 760–775, 2008.
[27]  C. A. Brick, D. L. Seely, and T. M. Palermo, “Association between sleep hygiene and sleep quality in medical students,” Behavioral Sleep Medicine, vol. 8, no. 2, pp. 113–121, 2010.
[28]  H. G. Lund, B. D. Reider, A. B. Whiting, and J. R. Prichard, “Sleep patterns and predictors of disturbed sleep in a large population of college students,” Journal of Adolescent Health, vol. 46, no. 2, pp. 124–132, 2010.
[29]  I. Hindmarch, U. Rigney, N. Stanley, P. Quinlan, J. Rycroft, and J. Lane, “A naturalistic investigation of the effects of day-long consumption of tea, coffee and water on alertness, sleep onset and sleep quality,” Psychopharmacology, vol. 149, no. 3, pp. 203–216, 2000.
[30]  K. Vail-Smith, W. M. Felts, and C. Becker, “Relationship between sleep quality and health risk behaviors in undergraduate college students,” College Student Journal, vol. 43, no. 3, pp. 924–930, 2009.
[31]  S. Cohrs, A. Rodenbeck, D. Riemann, et al., “Impaired sleep quality and sleep duration in smokers-results from the German multicenter study on nicotine dependence,” Addiction Biology. In press.
[32]  G. Cox and H. Rampes, “Adverse effects of khat: a review,” Advances in Psychiatric Treatment, vol. 9, no. 6, pp. 456–463, 2003.
[33]  R. Hoffman and M. Al'Absi, “Khat use and neurobehavioral functions: suggestions for future studies,” Journal of Ethnopharmacology, vol. 132, no. 3, pp. 554–563, 2010.
[34]  M. Al-Habori, “The potential adverse effects of habitual use of Catha edulis (khat),” Expert Opinion on Drug Safety, vol. 4, no. 6, pp. 1145–1154, 2005.
[35]  Z. L. Huang, Y. Urade, and O. Hayaishi, “The role of adenosine in the regulation of sleep,” Current Topics in Medicinal Chemistry, vol. 11, no. 8, pp. 1047–1057, 2011.
[36]  T. Roehrs and T. Roth, “Sleep, sleepiness, sleep disorders and alcohol use and abuse,” Sleep Medicine Reviews, vol. 5, no. 4, pp. 287–297, 2001.
[37]  J. M. Monti, S. R. Pandi-Perumal, B. L. Jacobs, and D. J. Nutt, Serotonin and Sleep Molecular, Functional and Clinical Aspects, Guildford, Secaucus, NJ, USA, Springer, London, UK, 2008.
[38]  J. E. James, “Acute and chronic effects of caffeine on performance, mood, headache, and sleep,” Neuropsychobiology, vol. 38, no. 1, pp. 32–41, 1998.
[39]  K. Matsumoto, Y. Saito, M. Abe, and K. Furumi, “The effects of daytime exercise on night sleep,” Journal of Human Ergology, vol. 13, no. 1, pp. 31–36, 1984.
[40]  S. D. Youngstedt, “Effects of exercise on sleep,” Clinics in Sports Medicine, vol. 24, no. 2, pp. 355–365, 2005.
[41]  H. Pallos, V. Gergely, N. Yamada, S. Miyazaki, and M. Okawa, “The quality of sleep and factors associated with poor sleep in Japanese graduate students,” Sleep and Biological Rhythms, vol. 5, no. 4, pp. 234–238, 2007.
[42]  J. E. James, A. L. Kristjansson, and I. D. Sigfusdottir, “Adolescent substance use, sleep, and academic achievement: evidence of harm due to caffeine,” Journal of Adolescence, vol. 34, no. 4, pp. 665–673, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413