全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Relationship between Diabetic Neuropathy and Sleep Apnea Syndrome: A Meta-Analysis

DOI: 10.1155/2013/150371

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aims. High prevalence of sleep apnea syndrome (SAS) has been reported in patients with diabetes. However, whether diabetic neuropathy (DN) contributes to this high prevalence is controversial. Our aim of this study is to compare the prevalence of SAS between patients with and without DN. Methods. Systematic literature searches were conducted for cross-sectional studies that reported the number of patients with DN and SAS using MEDLINE (from 1966 to Nov 5, 2012) and EMBASE (from 1974 to Nov 5, 2012). Odds ratios (ORs) of SAS related to DN were pooled with the Mantel-Haenszel method. Results. Data were obtained from 5 eligible studies (including 6 data sets, 880 participants, and 429 cases). Overall, the pooled OR of SAS in patients with DN compared with that in non-DN patients was significant (OR (95% CI), ?1.95 (1.03–3.70)). The pooled OR of SAS was 1.90 (0.97–3.71) in patients with type 2 diabetes. Excluding data on patients with type 1 diabetes, a higher OR was observed in younger patients (mean age <60 years) than in those ≥60 years among whom the OR remained significant (3.82; 95% CI, 2.24–6.51 and 1.17; 95% CI, 0.81–1.68). Conclusions. Current meta-analysis suggested the association of some elements of neuropathy with SAS in type 2 diabetes. Further investigations are needed to clarify whether the association is also true for patients with type 1 diabetes. 1. Introduction Sleep apnea syndrome (SAS) is characterized by nocturnal sleep restriction, sleep fragmentation, and intermittent hypoxia, resulting in poor sleep quality and daytime sleepiness [1, 2]. The prevalence of SAS, in particular obstructive sleep apnea, is dramatically increasing with the increased prevalence of obesity, which is the main cause of the upper airway obstruction typically observed as snoring while sleeping [3]. SAS not only causes a lower quality of life due to sleepiness but also has clinical consequences that include hypertension, diabetes, cardiovascular disease, and sudden death [1, 2, 4]. A recent meta-analysis indicated that obstructive sleep apnea is associated with an increased risk of future type 2 diabetes, [5] clearly suggesting that individuals with diabetes had a higher prevalence of SAS compared to those without diabetes. The higher prevalence of SAS is partially explained by the higher prevalence of obesity among individuals with diabetes compared with those without diabetes [6, 7]. Diabetic neuropathy (DN) [8, 9] has been suggested as another explanation for the presence of SAS because it is diabetes-specific [10]. However, epidemiological findings

References

[1]  V. K. Somers, D. P. White, R. Amin et al., “Sleep apnea and cardiovascular disease. An American heart association/American college of cardiology foundation scientific statement from the American heart association council for high blood pressure research professional education committee, council on clinical cardiology, stroke council, and council on cardiovascular nursing in collaboration with the national heart, lung,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 686–717, 2008.
[2]  J. E. Shaw, N. M. Punjabi, J. P. Wilding, K. G. M. M. Alberti, and P. Z. Zimmet, “Sleep-disordered breathing and type 2 diabetes. A report from the International diabetes federation taskforce on epidemiology and prevention,” Diabetes Research and Clinical Practice, vol. 81, no. 1, pp. 2–12, 2008.
[3]  A. R. Schwartz, S. P. Patil, A. M. Laffan, V. Polotsky, H. Schneider, and P. L. Smith, “Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 185–192, 2008.
[4]  O. Ludka, T. Konecny, and V. Somers, “Sleep apnea, cardiac arrhythmias, and sudden death,” Texas Heart Institute Journal, vol. 38, no. 4, pp. 340–343, 2011.
[5]  X. Wang, Y. Bi, Q. Zhang, and F. Pan, “Obstructive sleep apnoea and the risk of type 2 diabetes: a meta-analysis of prospective cohort studies,” Respirology, vol. 18, no. 1, pp. 140–146, 2013.
[6]  H. E. Resnick, S. Redline, E. Shahar et al., “Diabetes and sleep disturbances: findings from the sleep heart health study,” Diabetes Care, vol. 26, no. 3, pp. 702–709, 2003.
[7]  B. Balkau, S. Vol, S. Loko et al., “High baseline insulin levels associated with 6-year incident observed sleep apnea,” Diabetes Care, vol. 33, no. 5, pp. 1044–1049, 2010.
[8]  A. I. Vinik, M. T. Holland, J. M. Le Beau, F. J. Liuzzi, K. B. Stansberry, and L. B. Colen, “Diabetic neuropathies,” Diabetes Care, vol. 15, no. 12, pp. 1926–1975, 1992.
[9]  A. I. Vinik, T. S. Park, K. B. Stansberry, and G. L. Pittenger, “Diabetic neuropathies,” Diabetologia, vol. 43, no. 8, pp. 957–973, 2000.
[10]  K. O. Lee, J. S. Nam, C. W. Ahn et al., “Insulin resistance is independently associated with peripheral and autonomic neuropathy in Korean type 2 diabetic patients,” Acta Diabetologica, vol. 49, no. 2, pp. 97–103, 2012.
[11]  P. Bottini, L. Scionti, F. Santeusanio, G. Casucci, and C. Tantucci, “Impairment of the respiratory system in diabetic autonomic neuropathy,” Diabetes, Nutrition and Metabolism, vol. 13, no. 3, pp. 165–172, 2000.
[12]  P. J. Rees, J. G. Prior, G. M. Cochrane, and T. J. H. Clark, “Sleep apnoea in diabetic patients with autonomic neuropathy,” Journal of the Royal Society of Medicine, vol. 74, no. 3, pp. 192–195, 1981.
[13]  S. Mondini and C. Guilleminault, “Abnormal breathing patterns during sleep in diabetes,” Annals of Neurology, vol. 17, no. 4, pp. 391–395, 1985.
[14]  A. Schober, M. F. Neurath, and I. A. Harsch, “Prevalence of sleep apnoea in diabetic patients,” Clinical Respiratory Journal, vol. 5, no. 3, pp. 165–172, 2011.
[15]  P. Bottini, S. Redolfi, M. L. Dottorini, and C. Tantucci, “Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics,” Respiration, vol. 75, no. 3, pp. 265–271, 2008.
[16]  T. Keller, C. Hader, J. de Zeeuw, and K. Rasche, “Obstructive sleep apnea syndrome: the effect of diabetes and autonomic neuropathy,” Journal of Physiology and Pharmacology, vol. 58, no. 5, pp. 313–318, 2007.
[17]  P. Bottini, M. L. Dottorini, M. C. Cordoni, G. Casucci, and C. Tantucci, “Sleep-disordered breathing in nonobese diabetic subjects with autonomic neuropathy,” European Respiratory Journal, vol. 22, no. 4, pp. 654–660, 2003.
[18]  A. A. F. Sima and H. Kamiya, “Diabetic neuropathy differs in type 1 and type 2 diabetes,” Annals of the New York Academy of Sciences, vol. 1084, pp. 235–249, 2006.
[19]  G. A. Wells, B. O. C. D. Shea, J. Peterson, V. Welch, and M. Losos, “The Newcastle-Ottawa scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses,” http://www.ohri.ca/programs/clinical_epidemiology/.
[20]  N. Mantel and W. Haenszel, “Statistical aspects of the analysis of data from retrospective studies of disease,” Journal of the National Cancer Institute, vol. 22, pp. 719–748, 1959.
[21]  R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986.
[22]  J. H. Ficker, S. H. Dertinger, W. Siegfried et al., “Obstructive sleep apnoea and diabetes mellitus: the role of cardiovascular autonomic neuropathy,” European Respiratory Journal, vol. 11, no. 1, pp. 14–19, 1998.
[23]  J. P. Laaban, S. Daenen, D. Léger et al., “Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients,” Diabetes and Metabolism, vol. 35, no. 5, pp. 372–377, 2009.
[24]  S. Takahashi, S. Sakurai, T. Nishijima et al., “The prevalence of obstructive sleep apnea syndrome in the diabetes mellitus patients who require educational hospitalization,” Respiration and Circulation, vol. 51, no. 6, pp. 617–621, 2003.
[25]  M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” The British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.
[26]  A. A. Tahrani, A. Ali, N. T. Raymond et al., “Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes,” The American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 5, pp. 434–441, 2012.
[27]  K. Nomura, H. Ikeda, K. Mori et al., “Less variation of R-R interval of electrocardiogram in nonobese type 2 diabetes with nocturnal intermittent hypoxia,” Endocrine Journal, vol. 60, no. 2, pp. 225–230, 2013.
[28]  T. Young, E. Shahar, F. J. Nieto et al., “Predictors of sleep-disordered breathing in community-dwelling adults: the sleep heart health study,” Archives of Internal Medicine, vol. 162, no. 8, pp. 893–900, 2002.
[29]  F. E. Munschauer, L. Loh, R. Bannister, and J. Newsom-Davis, “Abnormal respiration and sudden death during sleep in multiple system atrophy with autonomic failure,” Neurology, vol. 40, no. 4, pp. 677–679, 1990.
[30]  C. Tantucci, L. Scionti, P. Bottini et al., “Influence of autonomic neuropathy of different severities on the hypercapnic drive to breathing in diabetic patients,” Chest, vol. 112, no. 1, pp. 145–153, 1997.
[31]  P. Lévy, J. Pépin, and M. Dematteis, “Pharyngeal neuropathy in obstructive sleep apnea: where are we going?” The American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 3, pp. 241–243, 2012.
[32]  M. Dematteis, J. L. Pépin, M. Jeanmart, C. Deschaux, A. Labarre-Vila, and P. Lévy, “Charcot-Marie-Tooth disease and sleep apnoea syndrome: a family study,” The Lancet, vol. 357, no. 9252, pp. 267–272, 2001.
[33]  C. L. Marcus, L. B. F. Do Prado, J. Lutz et al., “Developmental changes in upper airway dynamics,” Journal of Applied Physiology, vol. 97, no. 1, pp. 98–108, 2004.
[34]  R. E. Maser, A. R. Steenkiste, J. S. Dorman et al., “Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study,” Diabetes, vol. 38, no. 11, pp. 1456–1461, 1989.
[35]  J. Partanen, L. Niskanen, J. Lehtinen, E. Mervaala, O. Siitonen, and M. Uusitupa, “Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 333, no. 2, pp. 89–94, 1995.
[36]  S. Tesfaye, N. Chaturvedi, S. E. M. Eaton et al., “Vascular risk factors and diabetic neuropathy,” The New England Journal of Medicine, vol. 352, no. 4, pp. 341–350, 2005.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133