全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MR- and ER-Based Semiactive Engine Mounts: A Review

DOI: 10.1155/2013/831017

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hybrid propulsion technologies, including hybrid electric and hydraulic hybrid, equip vehicles with nonconventional power sources (in addition to the internal combustion engine) to provide higher fuel efficiency. However, these technologies tend to lead to higher levels of noise, vibration, and harshness in the vehicles, mainly due to the switching between the multiple power sources involved. In addition, the shocks and vibrations associated with the power sources switching may occur over a wide range of frequencies. It has been proven that passive vibration isolators (e.g., elastomeric and hydraulic mounts) are unable to mitigate or totally isolate such shocks and vibrations. Active mounts, while effective, are more complex, require significant power to operate, and can lead to system instabilities. Semiactive vibration isolators have been shown to be as effective as active mounts while being less complex and requiring less power to operate. This paper presents a review of novel semiactive shock and vibration isolators developed using magnetorheological and electrorheological fluids. These fluids change their yield stress in response to an externally applied magnetic and electric field, respectively. As a result, these fluids allow one to transform a passive hydraulic vibration isolator into a semiactive device. 1. Introduction In recent decades, the soaring price of fossil fuels has impacted negatively the popularity of the vehicles with internal combustion (IC) engines. This is due, primarily, to the fact that the emissions from IC engines account for a large percentage of the carbon dioxide stored in the atmosphere [1]. In addition, the materials conventionally used for making the cars have become scarcer, and recycling of used cars raised concerns about pollution and waste management. Furthermore, the increasing number of cars worsened the congestion problem and road quality. Among these causes, the gas price and the emission are considered the most important, since they directly affect the wealth of the society and the sustainability of the earth, respectively. Electric propulsion systems, on the other hand, received more attention as potential candidates for the future of transportation. Nevertheless, since the full electric technology is still in the developing phase and very expensive for regular passenger cars, a great number of modifications to the conventional vehicles have been made in order to achieve higher fuel efficiency and lower emission rate. One of the technologies presented by Kumagai et al. [2] is variable cylinder management

References

[1]  J. DeCicco and F. Fung, “Global warming on the road—the climate impact of America’s automobiles,” http://www.edf.org/documents/5301_Globalwarmingontheroad.pdf.
[2]  K. Kumagai, M. Fujiwara, M. Segawa, R. Sato, and Y. Tamura, “Development of a 6-cylinder gasoline engine with new variable cylinder management technology,” in Proceedings of the SAE World Congress and Exhibition, April 2008, paper no. 2008-01-0610.
[3]  L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. García, “Optimization of power management in an hybrid electric vehicle using dynamic programming,” Mathematics and Computers in Simulation, vol. 73, no. 1–4, pp. 244–254, 2006.
[4]  Y. Ito, S. Tomura, and S. Sasaki, “Development of vibration reduction motor control for hybrid vehicles,” in Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON '07), pp. 516–521, November 2007.
[5]  Y. K. Ahn, M. Ahmadian, and S. Morishita, “On the design and development of a Magneto-Rheological mount,” Vehicle System Dynamics, vol. 32, no. 2, pp. 199–216, 1999.
[6]  M. Abuhaiba, Mathematical modeling and analysis of a variable displacement hydraulic bent axis pump linked to high pressure and low pressure accumulators [Ph.D. Dissertation], Mechanical, Industrial and Manufacturing Department, University of Toledo, 2009.
[7]  A. Agrawal, C. Ciocanel, T. Martinez et al., “A bearing application using magnetorheological fluids,” Journal of Intelligent Material Systems and Structures, vol. 13, no. 10, pp. 667–673, 2002.
[8]  J. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4, pp. 555–569, 2000.
[9]  R. Ay, M. F. Golnaraghi, and A. Khajepour, “Investigation on a semi-active hydro mount using Mr Fluid,” in Proceedings of the NATO, Symposium on Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, Braunschweig, Germany, May 2000.
[10]  Y. K. Ahn, B. S. Yang, M. Ahmadian, and S. Morishita, “A small sized variable-damping mount using magneto-rheological fluid,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 2, pp. 127–133, 2005.
[11]  S. R. Hong and S. B. Choi, “Vibration control of a structural system using magneto-rheological fluid mount,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 11-12, pp. 931–936, 2005.
[12]  Delphi Corp., Delphi Magneto-Rheological (MR) Powertrain Mount, 2005.
[13]  D. E. Barber and J. D. Carlson, “Performance characteristics of prototype MR engine mounts containing LORD glycol MR fluids,” in Proceedings of the 11th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, Dresden, Germany, 2009.
[14]  H. Mansour, S. Arzanpour, M. F. Golnaraghi, and A. M. Parameswaran, “Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber,” Vehicle System Dynamics, vol. 49, no. 3, pp. 449–462, 2011.
[15]  T. Nguyen, A novel semi-active magnetorheological mount for vibration isolation [Dissertation], 2009.
[16]  S. R. Hong, S. B. Choi, W. J. Jung, and W. B. Jeong, “Vibration isolation of structural systems using squeeze mode ER mounts,” Journal of Intelligent Material Systems and Structures, vol. 13, no. 7-8, pp. 421–424, 2002.
[17]  R. Stanway, J. L. Sproston, M. J. Prendergast, J. R. Case, and C. E. Wilne, “ER fluids in the squeeze-flow mode: an application to vibration isolation,” Journal of Electrostatics, vol. 28, no. 1, pp. 89–94, 1992.
[18]  E. W. Williams, S. G. Rigby, J. L. Sproston, and R. Stanway, “Electrorheological fluids applied to an automotive engine mount,” Journal of Non-Newtonian Fluid Mechanics, vol. 47, pp. 221–238, 1993.
[19]  J. L. Sproston, R. Stanway, M. J. Prendergast, J. R. Case, and C. E. Wilne, “Prototype automotive engine mount using electrorheological fluids,” Journal of Intelligent Material Systems and Structures, vol. 4, no. 3, pp. 418–419, 1993.
[20]  J. L. Sproston, R. Stanway, E. W. Williams, and S. Rigby, “The electrorheological automotive engine mount,” Journal of Electrostatics, vol. 32, no. 3, pp. 253–259, 1994.
[21]  W. J. Jung, W. B. Jeong, S. R. Hong, and S. B. Choi, “Vibration control of a flexible beam structure using squeeze-mode ER mount,” Journal of Sound and Vibration, vol. 273, no. 1-2, pp. 185–199, 2004.
[22]  S. R. Hong, S. B. Choi, and D. Y. Lee, “Comparison of vibration control performance between flow and squeeze mode ER mounts: experimental work,” Journal of Sound and Vibration, vol. 291, no. 3–5, pp. 740–748, 2006.
[23]  S. B. Choi, Y. T. Choi, C. C. Cheong, and Y. S. Jeon, “Performance evaluation of a mixed mode ER engine mount via hardware-in-the-loop simulation,” Journal of Intelligent Material Systems and Structures, vol. 10, no. 8, pp. 671–677, 1999.
[24]  S. B. Choi and H. J. Song, “Vibration control of a passenger vehicle utilizing a semi-active ER engine mount,” Vehicle System Dynamics, vol. 37, no. 3, pp. 193–216, 2002.
[25]  S. C. Lim, J. S. Park, S. B. Choi, and Y. P. Park, “Vibration control of a CD-ROM feeding system using electro-rheological mounts,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 9, pp. 629–637, 2001.
[26]  R. I. Woods and K. L. Lawrence, Modeling and Simulation of Dynamic Systems, Prentice Hall, London, UK, 1997.
[27]  A. V. Srinivasan and M. D. McFarland, Smart Structures: Analysis and Design, Cambridge University Press, New York, NY, USA, 2001.
[28]  H. Adiguna, M. Tiwari, R. Singh, H. E. Tseng, and D. Hrovat, “Transient response of a hydraulic engine mount,” Journal of Sound and Vibration, vol. 268, no. 2, pp. 217–248, 2003.
[29]  J. H. Koo, M. Ahmadian, and M. Elahinia, “Semi-active controller dynamics in a magneto-rheological tuned vibration absorber,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 69–76, March 2005.
[30]  M. Unsal, C. Niezrecki, and C. D. Crane :, “Six DOF vibration control using magnetorheological technology,” in Symposium on Smart Structures and Materials, Proceedings of SPIE, San Diego, Calif, USA, February 2006.
[31]  M. Ahmadian, “On the development of fuzzy skyhook control for semiactive magneto rheological systems,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 268–282, March 2005.
[32]  X. Wang, F. Gordaninejad, and G. Hitchcock, “A magneto-rheological fluid-elastomer vibration isolator,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 217–225, March 2005.
[33]  S. F. Ali and A. Ramaswamy, “Hybrid structural control using magnetorheological dampers for baseisolated structures,” Smart Materials and Structures, vol. 18, no. 5, Article ID 055011, 2009.
[34]  S. . Wang, M. Elahinia, and T. Nguyen, “Displacement and force control of a quarter car using a mixed mode MR mount,” Shock and Vibration. In press.
[35]  D. H. Wang and W. H. Liao, “Modeling and control of magnetorheological fluid dampers using neural networks,” Smart Materials and Structures, vol. 14, no. 1, pp. 111–126, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413