全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements

DOI: 10.1155/2014/918057

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level) and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing. 1. Introduction Diverse paramedical treatments for swallowing disorders usually carried out by speech and language pathologists (SLPs) are introduced in the literature. It is expected that these treatment methods help to recover the swallowing functions, improve nutritional status, and prevent from developing the dysphagia consequences [1]. But, when these treatments are evaluated by scientific methods according to standards of evidence-based practice, lots of unanswered questions emerge [2] about the efficacy of them, dose-response effects, and certain populations who respond to each method well. So as mentioned by Speyer and colleagues, although some positive significant results have been published regarding the effects of different kinds of treatments in oropharyngeal dysphagia, further carefully controlled researches are needed [2]. Neuromuscular electrical stimulation (NMES) of the swallowing muscles is a relatively new therapeutic modality that is of great interest to the SLPs recently [3, 4]. Several studies were performed to evaluate the efficacy of this method. But, in spite of this increasing interest, there are important methodological issues about many of these existing publications that cause concerns regarding their therapeutic outcomes [3, 5]. A variety of protocols and techniques were used in these studies. Therefore reaching a firm conclusion about this approach and its effects will be hard. The only existing meta-analysis regarding the NMES for swallowing disorders [4] had reported just a small statistically significant improvement in clinical swallowing performance following the application of this technique. Moreover some reviews and systematic reviews [3, 5–7] emphasize the necessity for performing more carefully controlled

References

[1]  S. Singh and S. Hamdy, “Dysphagia in stroke patients,” Postgraduate Medical Journal, vol. 82, no. 968, pp. 383–391, 2006.
[2]  R. Speyer, L. Baijens, M. Heijnen, and I. Zwijnenberg, “Effects of therapy in oropharyngeal dysphagia by speech and language therapists: a systematic review,” Dysphagia, vol. 25, no. 1, pp. 40–65, 2010.
[3]  C. M. Steele, A. T. Thrasher, and M. R. Popovic, “Electric stimulation approaches to the restoration and rehabilitation of swallowing: a review,” Neurological Research, vol. 29, no. 1, pp. 9–15, 2007.
[4]  G. D. Carnaby-Mann and M. A. Crary, “Examining the evidence on neuromuscular electrical stimulation for swallowing: a meta-analysis,” Archives of Otolaryngology: Head and Neck Surgery, vol. 133, no. 6, pp. 564–571, 2007.
[5]  C. M. Steele, “Electrical stimulation of the pharyngeal swallow: does the evidence support application in clinical practice?” Journal of Speech-Language Pathology and Audiology, vol. 28, pp. 78–84, 2004.
[6]  K. J. Ayala and K. J. Cruz, “Transcutaneous electrical stimulation in dysphagia treatment: is there sufficient evidence,” TEJAS, vol. 31, pp. 37–54, 2008.
[7]  H. Clark, C. Lazarus, J. Arvedson, T. Schooling, and T. Frymark, “Evidence-based systematic review: effects of neuromuscular electrical stimulation on swallowing and neural activation,” American Journal of Speech-Language Pathology, vol. 18, no. 4, pp. 361–375, 2009.
[8]  S. H. Doeltgen, J. Dalrymple-Alford, M. C. Ridding, and M.-L. Huckabee, “Differential effects of neuromuscular electrical stimulation parameters on submental motor-evoked potentials,” Neurorehabilitation and Neural Repair, vol. 24, no. 6, pp. 519–527, 2010.
[9]  F. M. Heck, S. H. Doeltgen, and M.-L. Huckabee, “Effects of submental neuromuscular electrical stimulation on pharyngeal pressure generation,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 11, pp. 2000–2007, 2012.
[10]  M. L. Freed, L. Freed, R. L. Chatburn, and M. Christian, “Electrical Stimulation for swallowing disorders caused by stroke,” Respiratory Care, vol. 46, no. 5, pp. 466–474, 2001.
[11]  L. Blumenfeld, Y. Hahn, A. LePage, R. Leonard, and P. C. Belafsky, “Transcutaneous electrical stimulation versus traditional dysphagia therapy: a nonconcurrent cohort study,” Otolaryngology: Head and Neck Surgery, vol. 135, no. 5, pp. 754–757, 2006.
[12]  T. Gordon and J. Mao, “Muscle atrophy and procedures for training after spinal cord injury,” Physical Therapy, vol. 74, no. 1, pp. 50–60, 1994.
[13]  R. Ishida, J. B. Palmer, and K. M. Hiiemae, “Hyoid motion during swallowing: factors affecting forward and upward displacement,” Dysphagia, vol. 17, no. 4, pp. 262–272, 2002.
[14]  J. A. Logemann, “The evaluation and treatment of swallowing disorders,” Current Opinion in Otolaryngology and Head and Neck Surgery, vol. 6, no. 6, pp. 395–400, 1998.
[15]  R. Shaker, C. Easterling, M. Kern et al., “Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening,” Gastroenterology, vol. 122, no. 5, pp. 1314–1321, 2002.
[16]  R. Shaker, M. Kern, E. Bardan et al., “Augmentation of deglutitive upper esophageal sphincter opening in the elderly by exercise,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 272, no. 6, pp. G1518–G1522, 1997.
[17]  H. M. Clark, “Neuromuscular treatments for speech and swallowing: a tutorial,” American Journal of Speech-Language Pathology, vol. 12, no. 4, pp. 400–415, 2003.
[18]  W. J. Mysiw and R. D. Jackson, “Electrical stimulation,” in Physical Medicine and Rehabilitation, R. L. Braddom, Ed., pp. 464–487, Saunders, Philadelphia, Pa, USA, 1996.
[19]  D. A. Lake, “Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries,” Sports Medicine, vol. 13, no. 5, pp. 320–336, 1992.
[20]  K.-B. Lim, H.-J. Lee, S.-S. Lim, and Y.-I. Choi, “Neuromuscular electrical and thermal-tactile stimulation for dysphagia caused by stroke: a randomized controlled trial,” Journal of Rehabilitation Medicine, vol. 41, no. 3, pp. 174–178, 2009.
[21]  W. M. Jenkins, M. M. Merzenich, M. T. Ochs, T. Allard, and E. Guic-Robles, “Functional reorganization of primary somatosensory cortex in adult owl monekys after behaviorally controlled tactile stimulation,” Journal of Neurophysiology, vol. 63, no. 1, pp. 82–104, 1990.
[22]  S. Hamdy, J. C. Rothwell, Q. Aziz, K. D. Singh, and D. G. Thompson, “Long-term reorganization of human motor cortex driven by short-term sensory stimulation,” Nature Neuroscience, vol. 1, no. 1, pp. 64–68, 1998.
[23]  S. Hamdy, J. C. Rothwell, Q. Aziz, and D. G. Thompson, “Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke,” Clinical Science, vol. 99, no. 2, pp. 151–157, 2000.
[24]  S. Hamdy, Q. Aziz, J. C. Rothwell et al., “Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex,” Gastroenterology, vol. 115, no. 5, pp. 1104–1112, 1998.
[25]  C. L. Ludlow, I. Humbert, K. Saxon, C. Poletto, B. Sonies, and L. Crujido, “Effects of surface electrical stimulation both at rest and during swallowing in chronic pharyngeal dysphagia,” Dysphagia, vol. 22, no. 1, pp. 1–10, 2007.
[26]  M. Bülow, R. Speyer, L. Baijens, V. Woisard, and O. Ekberg, “Neuromuscular electrical stimulation (NMES) in stroke patients with oral and pharyngeal dysfunction,” Dysphagia, vol. 23, no. 3, pp. 302–309, 2008.
[27]  W. Permsirivanich, S. Tipchatyotin, M. Wongchai et al., “Comparing the effects of rehabilitation swallowing therapy vs. neuromuscular electrical stimulation therapy among stroke patients with persistent pharyngeal dysphagia: a randomized controlled study,” Journal of the Medical Association of Thailand, vol. 92, no. 2, pp. 259–265, 2009.
[28]  J.-W. Park, Y. Kim, J.-C. Oh, and H.-J. Lee, “Effortful swallowing training combined with electrical stimulation in post-stroke dysphagia: a randomized controlled study,” Dysphagia, vol. 27, no. 4, pp. 521–527, 2012.
[29]  S. Gallas, J. P. Marie, A. M. Leroi, and E. Verin, “Sensory transcutaneous electrical stimulation improves post-stroke dysphagic patients,” Dysphagia, vol. 25, no. 4, pp. 291–297, 2010.
[30]  I. A. Humbert, C. J. Poletto, K. G. Saxon et al., “The effect of surface electrical stimulation on hyolaryngeal movement in normal individuals at rest and during swallowing,” Journal of Applied Physiology, vol. 101, no. 6, pp. 1657–1663, 2006.
[31]  J. C. Rosenbek, J. A. Robbins, E. B. Roecker, J. L. Coyle, and J. L. Wood, “A penetration-aspiration scale,” Dysphagia, vol. 11, no. 2, pp. 93–98, 1996.
[32]  R. Mepani, S. Antonik, B. Massey et al., “Augmentation of deglutitive thyrohyoid muscle shortening by the shaker exercise,” Dysphagia, vol. 24, no. 1, pp. 26–31, 2009.
[33]  V. Robertson, A. R. Ward, J. L. Low, and A. Reed, Electrotherapy Explained: Principles and Practice, Elsevier Health Sciences, 2006.
[34]  G. Thorsteinsson, H. H. Stonnington, G. K. Stillwell, and L. R. Elveback, “The placebo effect of transcutaneous electrical stimulation,” Pain, vol. 5, no. 1, pp. 31–41, 1978.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413