全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acute Microvascular Changes after Subarachnoid Hemorrhage and Transient Global Cerebral Ischemia

DOI: 10.1155/2013/425281

Full-Text   Cite this paper   Add to My Lib

Abstract:

Subarachnoid hemorrhage and transient global cerebral ischemia result in similar pathophysiological changes in the cerebral microcirculation. These changes include microvascular constriction, increased leukocyte-endothelial interactions, blood brain barrier disruption, and microthrombus formation. This paper will look at various animal and preclinical studies that investigate these various microvascular changes, perhaps providing insight in how these microvessels can be a therapeutic target in both subarachnoid hemorrhage and transient global cerebral ischemia. 1. Introduction Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, most commonly caused by a ruptured intracranial aneurysm. At the time of aneurysm rupture, blood pours into the subarachnoid space, and the intracranial pressure (ICP) inside the rigid calvarium increases sharply, causing a corresponding decrease in cerebral blood flow (CBF). The patient’s clinical presentation on arrival to the hospital can depend on the degree and duration of this initial global cerebral ischemia. Patients with aneurysmal SAH may develop angiographic vasospasm and delayed cerebral ischemia (DCI) with onset 3–12 days after the initial rupture [1]. DCI may or may not be accompanied by large artery vasospasm as seen with vascular imaging [2]. A multicenter randomized clinical trial has not shown improvement in neurologic outcome despite ameliorating the delayed large artery vasospasm [3]. Whether this is due to efficacy of rescue therapy in the placebo groups or drug toxicity abrogating beneficial effects in the clazosentan groups has not been resolved. Nevertheless, as a result of these results, research in SAH has also investigated early brain injury and acute microvascular changes [4]. Nimodipine, an L-type calcium channel antagonist, is the only pharmacologic agent that has been shown to consistently improve neurologic outcomes in clinical trials of patients with SAH [5]. Similarly, cardiac arrest (CA) results in global cerebral ischemia that is transient in clinically relevant cases, since if cardiac function is not restored, the situation is of pathological interest only. Other causes of transient global cerebral ischemia (tGCI) include asphyxia, shock, and complex cardiac surgery [6]. The clinical presentation depends on the duration of cardiac arrest and time to initiating cardiopulmonary resuscitation. After global cerebral ischemia from SAH or tGCI, a cascade of molecular events occurs, resulting in variable degrees of brain injury and cerebrovascular changes. Global cerebral ischemia in

References

[1]  B. Weir, M. Grace, J. Hansen, and C. Rothberg, “Time course of vasospasm in man,” Journal of Neurosurgery, vol. 48, no. 2, pp. 173–178, 1978.
[2]  J. W. Dankbaar, M. Rijsdijk, I. C. Van Der Schaaf, B. K. Velthuis, M. J. H. Wermer, and G. J. E. Rinkel, “Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage,” Neuroradiology, vol. 51, no. 12, pp. 813–819, 2009.
[3]  R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” The Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011.
[4]  F. A. Sehba, J. Hou, R. M. Pluta, and J. H. Zhang, “The importance of early brain injury after subarachnoid hemorrhage,” Progress in Neurobiology, vol. 97, pp. 14–37, 2012.
[5]  S. M. Dorhout Mees, G. J. Rinkel, V. L. Feigin et al., “Calcium antagonists for aneurysmal subarachnoid haemorrhage,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000277, 2007.
[6]  I. Harukuni and A. Bhardwaj, “Mechanisms of brain injury after global cerebral ischemia,” Neurologic Clinics, vol. 24, no. 1, pp. 1–21, 2006.
[7]  Hypothermia after Cardiac Arrest Study Group, “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” The New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002.
[8]  S. A. Bernard, T. W. Gray, M. D. Buist et al., “Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia,” New England Journal of Medicine, vol. 346, no. 8, pp. 557–563, 2002.
[9]  F. A. Sehba and V. Friedrich, “Early micro vascular changes after subarachnoid hemorrhage,” Acta neurochirurgica, vol. 110, no. 1, pp. 49–55, 2011.
[10]  H. Kamii, I. Kato, H. Kinouchi et al., “Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase,” Stroke, vol. 30, no. 4, pp. 867–872, 1999.
[11]  M. Sabri, H. Jeon, J. Ai et al., “Anterior circulation mouse model of subarachnoid hemorrhage,” Brain Research, vol. 1295, pp. 179–185, 2009.
[12]  E. Titova, R. P. Ostrowski, J. H. Zhang, and J. Tang, “Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm,” Neurological Research, vol. 31, no. 6, pp. 568–581, 2009.
[13]  X. Y. Du, X. D. Zhu, G. Dong et al., “Characteristics of circle of Willis variations in the mongolian gerbil and a newly established ischemia-prone gerbil group,” ILAR Journal, vol. 52, no. 1, pp. E1–E7, 2011.
[14]  F. C. Barone, D. J. Knudsen, A. H. Nelson, G. Z. Feuerstein, and R. N. Willette, “Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy,” Journal of Cerebral Blood Flow and Metabolism, vol. 13, no. 4, pp. 683–692, 1993.
[15]  R. J. Traystman, “Animal models of focal and global cerebral ischemia,” ILAR Journal, vol. 44, no. 2, pp. 85–95, 2003.
[16]  H. Nornes and B. Magnaes, “Recurrent haemorrhage and haemostasis in patients with ruptured intracranial saccular aneurysms,” Acta Neurologica Scandinavica, vol. 51, pp. 473–476, 1972.
[17]  T. Asano and K. Sano, “Pathogenetic role of no reflow phenomenon in experimental subarachnoid hemorrhage in dogs,” Journal of Neurosurgery, vol. 46, no. 4, pp. 454–466, 1977.
[18]  J. B. Bederson, I. M. Germano, L. Guarino, and J. P. Muizelaar, “Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat,” Stroke, vol. 26, no. 6, pp. 1086–1092, 1995.
[19]  T. Westermaier, A. Jauss, J. Eriskat, E. Kunze, and K. Roosen, “Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. Laboratory investigation,” Journal of Neurosurgery, vol. 110, no. 5, pp. 996–1002, 2009.
[20]  E. Tasdemiroglu, R. MacFarlane, E. P. Wei, H. A. Kontos, and M. A. Moskowitz, “Pial vessel caliber and cerebral blood flow become dissociated during ischemia-reperfusion in cats,” American Journal of Physiology, vol. 263, no. 2, pp. H533–H536, 1992.
[21]  K. A. Hossmann, “Reperfusion of the brain after global ischemia: hemodynamic disturbances,” Shock, vol. 8, no. 2, pp. 95–101, 1997.
[22]  R. A. Kloner, “No-reflow phenomenon: maintaining vascular integrity,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 16, pp. 244–250, 2011.
[23]  A. Ames III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, “Cerebral ischemia. II. The no-reflow phenomenon,” American Journal of Pathology, vol. 52, no. 2, pp. 437–453, 1968.
[24]  B. W. B?ttiger, J. J. Krumnikl, P. Gass, B. Schmitz, J. Motsch, and E. Martin, “The cerebral ‘no-reflow’ phenomenon after cardiac arrest in rats-influence of low-flow reperfusion,” Resuscitation, vol. 34, no. 1, pp. 79–87, 1997.
[25]  E. G. Fischer, A. Ames, E. T. Hedley Whyte, and S. O'Gorman, “Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the ‘no reflow phenomenon’,” Stroke, vol. 8, no. 1, pp. 36–39, 1977.
[26]  D. A. Herz, S. Baez, and K. Shulman, “Pial microcirculation in subarachnoid hemorrhage,” Stroke, vol. 6, no. 4, pp. 417–424, 1975.
[27]  B. Friedrich, F. Muller, S. Feiler, K. Scholler, and N. Plesnila, “Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 3, pp. 447–455, 2012.
[28]  B. L. Sun, C. B. Zheng, M. F. Yang, H. Yuan, S. M. Zhang, and L. X. Wang, “Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage,” Cellular and Molecular Neurobiology, vol. 29, no. 2, pp. 235–241, 2009.
[29]  M. Sabri, J. Ai, K. Lakovic, J. D'abbondanza, D. Ilodigwe, and R. L. Macdonald, “Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage,” Neuroscience, vol. 224, pp. 26–37, 2012.
[30]  G. W. Britz, J. R. Meno, I. S. Park et al., “Time-dependent alterations in functional and pharmacological arteriolar reactivity after subarachnoid hemorrhage,” Stroke, vol. 38, no. 4, pp. 1329–1335, 2007.
[31]  K. W. Park, C. Metais, H. B. Dai, M. E. Comunale, and F. W. Sellke, “Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage,” Anesthesia and Analgesia, vol. 92, no. 4, pp. 990–996, 2001.
[32]  F. A. Sehba and V. Friedrich, “Cerebral microvasculature is an early target of subarachnoid hemorrhage,” Acta Neurochirurgica Supplement, vol. 115, pp. 199–205, 2013.
[33]  K. Ley, “Molecular mechanisms of leukocyte recruitment in the inflammatory process,” Cardiovascular Research, vol. 32, no. 4, pp. 733–742, 1996.
[34]  C. V. Carman, “Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions',” Journal of Cell Science, vol. 122, no. 17, pp. 3025–3035, 2009.
[35]  V. Friedrich, R. Flores, A. Muller, W. Bi, E. I. Peerschke, and F. A. Sehba, “Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage,” Journal of Neuroinflammation, vol. 8, article 103, 2011.
[36]  M. Ishikawa, G. Kusaka, N. Yamaguchi et al., “Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage,” Neurosurgery, vol. 64, no. 3, pp. 546–553, 2009.
[37]  J. E. Merrill and S. P. Murphy, “Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species,” Brain, Behavior, and Immunity, vol. 11, no. 4, pp. 245–263, 1997.
[38]  L. L. Rubin and J. M. Staddon, “The cell biology of the blood-brain barrier,” Annual Review of Neuroscience, vol. 22, pp. 11–28, 1999.
[39]  N. J. Abbott, L. R?nnb?ck, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006.
[40]  S. Park, M. Yamaguchi, C. Zhou, J. W. Calvert, J. Tang, and J. H. Zhang, “Neurovascular protection reduces early brain injury after subarachnoid hemorrhage,” Stroke, vol. 35, no. 10, pp. 2412–2417, 2004.
[41]  T. Doczi, F. Joo, and G. Adam, “Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model,” Neurosurgery, vol. 18, no. 6, pp. 733–739, 1986.
[42]  T. Doczi, F. Joo, S. Sonkodi, and G. Adam, “Increased vulnerability of the blood-brain barrier to experimental subarachnoid hemorrhage in spontaneously hypertensive rats,” Stroke, vol. 17, no. 3, pp. 498–501, 1986.
[43]  A. Germanò, D. D'Avella, C. Imperatore, G. Caruso, and F. Tomasello, “Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage,” Acta Neurochirurgica, vol. 142, no. 5, pp. 575–581, 2000.
[44]  E. W. Peterson and E. R. Cardoso, “The blood-brain barrier following experimental subarachnoid hemorrhage. Part 1: response to insult caused by arterial hypertension,” Journal of Neurosurgery, vol. 58, no. 3, pp. 338–344, 1983.
[45]  F. A. Sehba, G. Mostafa, J. Knopman, V. Friedrich, and J. B. Bederson, “Acute alterations in microvascular basal lamina after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 101, no. 4, pp. 633–640, 2004.
[46]  Y. Tu, J. Fu, J. Wang, G. Fu, L. Wang, and Y. Zhang, “Extracellular matrix metalloproteinase inducer is associated with severity of brain oedema following experimental subarachnoid haemorrhage in rats,” The Journal of International Medical Research, vol. 40, pp. 1089–1098, 2012.
[47]  J. Yan, C. Chen, Q. Hu et al., “The role of p53 in brain edema after 24h of experimental subarachnoid hemorrhage in a rat model,” Experimental Neurology, vol. 214, no. 1, pp. 37–46, 2008.
[48]  C. Imperatore, A. Germanò, D. D'Avella, F. Tomasello, and G. Costa, “Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage,” Life Sciences, vol. 66, no. 9, pp. 779–790, 2000.
[49]  C. C. Larsen, J. Hansen-Schwartz, J. D. Nielsen, and J. Astrup, “Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 152, no. 9, pp. 1577–1581, 2010.
[50]  F. A. Sehba, G. Mostafa, V. Friedrich, and J. B. Bederson, “Acute microvascular platelet aggregation after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1094–1100, 2005.
[51]  V. Friedrich, R. Flores, A. Muller, and F. A. Sehba, “Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage,” Brain Research, vol. 1354, pp. 179–187, 2010.
[52]  V. Friedrich, R. Flores, A. Muller, and F. A. Sehba, “Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage,” Neuroscience, vol. 165, no. 3, pp. 968–975, 2010.
[53]  J. M. Pisapia, X. Xu, J. Kelly et al., “Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan,” Experimental Neurology, vol. 233, pp. 357–363, 2012.
[54]  E. Pinard, N. Engrand, and J. Seylaz, “Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: involvement of type I nitric oxide synthase,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 12, pp. 1648–1658, 2000.
[55]  J. Y. Li, H. Ueda, A. Seiyama et al., “Ischemic vasoconstriction and tissue energy metabolism during global cerebral ischemia in gerbils,” Journal of Neurotrauma, vol. 24, no. 3, pp. 547–558, 2007.
[56]  E. F. Hauck, S. Apostel, J. F. Hoffmann, A. Heimann, and O. Kempski, “Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 4, pp. 383–391, 2004.
[57]  W. D. Dietrich, R. Busto, and M. D. Ginsberg, “Cerebral endothelial microvilli: formation following global forebrain ischemia,” Journal of Neuropathology and Experimental Neurology, vol. 43, no. 1, pp. 72–83, 1984.
[58]  R. Pluta, A. S. Lossinsky, M. J. Mossakowski, L. Faso, and H. M. Wisniewski, “Reassessment of a new model of complete cerebral ischemia in rats: method of induction of clinical death, pathophysiology and cerebrovascular pathology,” Acta Neuropathologica, vol. 83, no. 1, pp. 1–11, 1991.
[59]  C. Abels, F. R?hrich, S. Corvin, R. Meyermann, A. Baethmann, and L. Schürer, “Leukocyte-endothelium-interaction in pial vessels following global, cerebral ischaemia,” Acta Neurochirurgica, vol. 142, no. 3, pp. 333–339, 2000.
[60]  B. S. Aspey, C. Jessimer, S. Pereira, and M. J. G. Harrison, “Do leukocytes have a role in the cerebral no-reflow phenomenon?” Journal of Neurology Neurosurgery and Psychiatry, vol. 52, no. 4, pp. 526–528, 1989.
[61]  U. Dirnagl, K. Niwa, G. Sixt, and A. Villringer, “Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging,” Stroke, vol. 25, no. 5, pp. 1028–1038, 1994.
[62]  L. Ritter, J. Funk, L. Schenkel et al., “Inflammatory and hemodynamic changes in the cerebral microcirculation of aged rats after global cerebral ischemia and reperfusion,” Microcirculation, vol. 15, no. 3, pp. 297–310, 2008.
[63]  E. Uhl, J. Beck, W. Stummer, J. Lehmberg, and A. Baethmann, “Leukocyte-endothelium interactions in pial venules during the early and late reperfusion period after global cerebral ischemia in gerbils,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 979–987, 2000.
[64]  O. Uyama, N. Okamura, M. Yanase, M. Narita, K. Kawabata, and M. Sugita, “Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence,” Journal of Cerebral Blood Flow and Metabolism, vol. 8, no. 2, pp. 282–284, 1988.
[65]  N. V. Todd, P. Picozzi, H. A. Crockard, and R. W. R. Russell, “Duration of ischemia influences the development and resolution of ischemic brain edema,” Stroke, vol. 17, no. 3, pp. 466–471, 1986.
[66]  Y. Q. Zheng, J. X. Liu, J. N. Wang, and L. Xu, “Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia,” Brain Research, vol. 1138, no. 1, pp. 86–94, 2007.
[67]  R. Pluta, A. S. Lossinsky, M. Walski, H. M. Wisniewski, and M. J. Mossakowski, “Platelet occlusion phenomenon after short- and long-term survival following complete cerebral ischemia in rats produced by cardiac arrest,” Journal of Brain Research, vol. 35, no. 4, pp. 463–471, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413