全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Ulcers  2012 

Stratification of Highest-Risk Patients with Chronic Skin Ulcers in a Stanford Retrospective Cohort Includes Diabetes, Need for Systemic Antibiotics, and Albumin Levels

DOI: 10.1155/2012/767861

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic nonsurgical skin wounds such as venous stasis and diabetic ulcers have been associated with a number of comorbid conditions; however, the strength of these associations has not been compared. We utilized the Stanford Translational Research Integrated Database Environment (STRIDE) system to identify a cohort of 637 patients with chronic skin ulcers. Preliminary analysis ( ) showed that 49.7% of the patients had a poor prognosis such as amputation or a nonhealing ulcer for at least a year. Factors significantly associated ( ) with these outcomes included diabetes mellitus, chronic kidney disease, peripheral neuropathy, peripheral arterial disease, and need for systemic antibiotics. Patients with poor outcomes also tended to have lower hemoglobin levels ( ), higher WBC levels ( ), and lower albumin levels ( ). On multivariate analysis, however, only diabetes mellitus (OR 5.87, 1.36–25.3), need for systemic antibiotics (OR 3.88, 1.06–14.2), and albumin levels (0.20 per unit, 0.07–0.60) remained significant independent predictors of poor wound-healing outcomes. These data identify patients at the highest risk for poor wound-healing and who may benefit the most from more aggressive wound care and treatment. 1. Introduction Chronic wounds cause a significant morbidity and financial expense in the United States, affecting 6.5 million patients with estimated treatment costs of $25 billion per year [1, 2]. Venous leg ulcers, the most common type of chronic skin wound, alone affect more than 1 million US citizens per year with an associated annual cost of $2.5 billion [3, 4]. Of these patients, only 50% effectively heal, affecting both quality of life and requiring long-term care. Moreover, in the diabetic population, numbering approximately 17 million patients in the United States, nonhealing foot ulcers can become life threatening if infected and confer a 15% increased risk of amputation compared to the general population [5–8]. A number of factors have been documented in the medical literature which predispose patients to poor wound healing. These include underlying diseases such as diabetes mellitus, venous insufficiency, peripheral arterial disease, tobacco smoking, low serum albumin, and inflammatory conditions (such as pyoderma gangrenosum) among others [8–15]. According to a recent report, chronic kidney disease (CKD), hypertension, and myocardial ischemia may also be associated with increased risk of developing foot ulcers including severe ulcers that necessitate amputation [16, 17]. Additionally, there are reports of higher rates of malnutrition

References

[1]  C. K. Sen, G. M. Gordillo, S. Roy et al., “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair and Regeneration, vol. 17, no. 6, pp. 763–771, 2009.
[2]  H. Brem, O. Stojadinovic, R. F. Diegelmann et al., “Molecular markers in patients with chronic wounds to guide surgical debridement,” Molecular Medicine, vol. 13, no. 1-2, pp. 30–39, 2007.
[3]  D. J. Margolis, L. Allen-Taylor, O. Hoffstad, and J. A. Berlin, “The accuracy of venous leg ulcer prognostic models in a wound care system,” Wound Repair and Regeneration, vol. 12, no. 2, pp. 163–168, 2004.
[4]  I. C. Valencia, A. Falabella, R. S. Kirsner, and W. H. Eaglstein, “Chronic venous insufficiency and venous leg ulceration,” Journal of the American Academy of Dermatology, vol. 44, no. 3, pp. 401–424, 2001.
[5]  R. E. Pecoraro, G. E. Reiber, and E. M. Burgess, “Pathways to diabetic limb amputation. Basis for prevention,” Diabetes Care, vol. 13, no. 5, pp. 513–521, 1990.
[6]  G. E. Reiber, E. J. Boyko, and D. G. Smith, “Lower extremity foot ulcers and amputations in diabetes,” in Diabetes in America, pp. 409–428, National Institutes of Health, Bethesda, Md, USA, 2nd edition, 1995, NIH Publication No. 95-1468.
[7]  Centers for Disease Control and Prevention, National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2000, US Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, Ga, USA, 2002.
[8]  H. Yasuhara, S. Naka, H. Yanagie, and H. Nagawa, “Influence of diabetes on persistent nonhealing ischemic foot ulcer in end-stage renal disease,” World Journal of Surgery, vol. 26, no. 11, pp. 1360–1364, 2002.
[9]  T. Mustoe, “Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy,” American Journal of Surgery, vol. 187, no. 5, pp. 65S–70S, 2004.
[10]  H. J. Wallace and M. C. Stacey, “Levels of tumor necrosis factor-α (TNF-α) and soluble TNF receptors in chronic venous leg ulcers—correlations to healing status,” Journal of Investigative Dermatology, vol. 110, no. 3, pp. 292–296, 1998.
[11]  N. J. Trengove, H. Bielefeldt-Ohmann, and M. C. Stacey, “Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers,” Wound Repair and Regeneration, vol. 8, no. 1, pp. 13–25, 2000.
[12]  C. Legendre, C. Debure, S. Meaume, C. Lok, J. L. Golmard, and P. Senet, “Impact of protein deficiency on venous ulcer healing,” Journal of Vascular Surgery, vol. 48, no. 3, pp. 688–693, 2008.
[13]  M. S. Gohel, R. A. J. Windhaber, J. F. Tarlton, M. R. Whyman, and K. R. Poskitt, “The relationship between cytokine concentrations and wound healing in chronic venous ulceration,” Journal of Vascular Surgery, vol. 48, no. 5, pp. 1272–1277, 2008.
[14]  M. Weckroth, A. Vaheri, J. Lauharanta, T. Sorsa, and Y. T. Konttinen, “Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers,” Journal of Investigative Dermatology, vol. 106, no. 5, pp. 1119–1124, 1996.
[15]  M. Peschen, H. Grenz, C. Grothe, E. Sch?pf, and W. Vanscheidt, “Patterns of epidermal growth factor receptor, basic fibroblast growth factor and transforming growth factor-β3 expression in skin with chronic venous insufficiency,” European Journal of Dermatology, vol. 8, no. 5, pp. 334–338, 1998.
[16]  A. Freeman, K. May, N. Frescos, and P. R. Wraight, “Frequency of risk factors for foot ulceration in individuals with chronic kidney disease,” Internal Medicine Journal, vol. 38, no. 5, pp. 314–320, 2008.
[17]  D. J. Margolis, O. Hofstad, and H. I. Feldman, “Association between renal failure and foot ulcer or lower-extremity amputation in patients with diabetes,” Diabetes Care, vol. 31, no. 7, pp. 1331–1336, 2008.
[18]  P. Balaji and J. G. Mosley, “Evaluation of vascular and metabolic deficiency in patients with large leg ulcers,” Annals of the Royal College of Surgeons of England, vol. 77, no. 4, pp. 270–272, 1995.
[19]  A. I. Rojas and T. J. Phillips, “Patients with chronic leg ulcers show diminished levels of vitamins A and E, carotenes, and zinc,” Dermatologic Surgery, vol. 25, no. 8, pp. 601–604, 1999.
[20]  M. Andrews and C. Gallagher-Allred, “The role of zinc in wound healing,” Advances in Wound Care, vol. 12, no. 3, pp. 137–138, 1999.
[21]  K. Jonsson, J. A. Jensen, W. H. Goodson et al., “Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients,” Annals of Surgery, vol. 214, no. 5, pp. 605–613, 1991.
[22]  M. Thomas, C. Tsalamandris, R. MacIsaac, and G. Jerums, “Anaemia in diabetes: an emerging complication of microvascular disease,” Current Diabetes Reviews, vol. 1, no. 1, pp. 107–126, 2005.
[23]  T. K. Hunt, P. Twomey, B. Zederfeldt, and J. E. Dunphy, “Respiratory gas tensions and pH in healing wounds,” The American Journal of Surgery, vol. 114, no. 2, pp. 302–307, 1967.
[24]  A. Abidia, G. Laden, G. Kuhan et al., “The role of hyperbaric oxygen therapy in ischaemic diabetic lower extremity ulcers: a double-blind randomized-controlled trial,” European Journal of Vascular and Endovascular Surgery, vol. 25, no. 6, pp. 513–518, 2003.
[25]  M. J. Skyhar, A. R. Hargens, and M. B. Strauss, “Hyperbaric oxygen reduces edema and necrosis of skeletal muscle in compartment syndromes associated with hemorrhagic hypotension,” Journal of Bone and Joint Surgery, vol. 68, no. 8, pp. 1218–1224, 1986.
[26]  J. A. Niezgoda, P. Cianci, B. W. Folden, R. L. Ortega, J. Benjamin Slade, and A. B. Storrow, “The effect of hyperbaric oxygen therapy on a burn wound model in human volunteers,” Plastic and Reconstructive Surgery, vol. 99, no. 6, pp. 1620–1625, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413