全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Ulcers  2013 

In Vivo Models Used for Evaluation of Potential Antigastroduodenal Ulcer Agents

DOI: 10.1155/2013/796405

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peptic ulcer is among the most serious gastrointestinal diseases in the world. Several orthodox drugs are employed for the treatment of the disease. Although these drugs are effective, they produce many adverse effects thus limiting their use. In recent years, there has been a growing interest in alternative therapies, especially those from plants due to their perceived relative lower side effects, ease of accessibility, and affordability. Plant medicines with ethnomedicinal use in peptic ulcer management need to be screened for their effectiveness and possible isolation of lead compounds. This requires use of appropriate animal models of various ulcers. The limited number of antiulcer models for drug development against gastric and duodenal ulcer studies has hindered the progress of targeted therapy in this field. It is, therefore, necessary to review the literature on experimental models used to screen agents with potential antigastroduodenal ulcer activity and explain their biochemical basis in order to facilitate their use in the development of new preventive and curative antiulcer drugs. Clinical trials can then be carried out on agents/drugs that show promise. In this paper, current in vivo animal models of ulcers and the pathophysiological mechanisms underlying their induction, their limitations, as well as the challenges associated with their use have been discussed. 1. Introduction Peptic ulcer diseases comprise heterogeneous disorders, which manifest as a break in the lining of the gastrointestinal mucosa bathed by acid and pepsin. It is the most predominant of the gastrointestinal diseases [1, 2] with a worldwide prevalence of about 40% in the developed countries and 80% in the developing countries. It is generally recognized that peptic ulcer is caused by a lack of equilibrium between the gastric aggressive factors and the mucosal defensive factors [3]. Based on site of attack, peptic ulcer may be classified as oesophageal, duodenal, or gastric. The etiology of gastroduodenal ulcers is influenced by various aggressive and defensive factors such as acid-pepsin secretion, parietal cell, mucosal barrier, mucus secretion, blood flow, cellular regeneration and endogenous protective agents (prostaglandins and epidermal growth factors) [4]. According to Peckenpaugh and Poleman [5], some other factors, such as bad dietary habits, excessive intake of nonsteroidal anti-inflammatory agents, stress, hereditary predisposition and Helicobacter pylori infection, which is reported to account for more than 70% of cases, are responsible for the development of

References

[1]  R. K. Goyal, Elements of Pharmacology, B.S. Shah Prakashan, New Delhi, India, 17th edition, 2008.
[2]  P. Malfertheiner, F. K. Chan, and K. E. McColl, “Peptic ulcer disease,” The Lancet, vol. 374, no. 9699, pp. 1449–1461, 2009.
[3]  C. V. Rao, K. Sairam, and R. K. Goel, “Experimental evaluation of Bocopa monniera on rat gastric ulceration and secretion,” Indian Journal of Physiology and Pharmacology, vol. 44, no. 4, pp. 435–441, 2000.
[4]  D. L. Valle, “Peptic ulcer diseases and related disorders,” in Harrison's Principles of Internal Medicine, E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, and J. L. Jameson, Eds., pp. 1746–1762, McGraw-Hill, New York, NY, USA, 2005.
[5]  N. J. Peckenpaugh and C. M. Poleman, Nutricao: Essenciae Dietoterapia, Editora Roca, Sao Paulo, Brazil, 7th edition, 1997.
[6]  W. A. Hoogerwerf and P. J. Pasricha, “Agents used for control of gastric acidity and treatment of peptic ulcers and gastroesophageal reflux disease,” in The Pharmacological Basis of Therapeutics, J. G. Hardman, L. E. Limbird, and G. A. Goodman, Eds., pp. 1005–1019, McGraw-Hill, New York, NY, USA, 10th edition, 2001.
[7]  S. M. K. Rates, “Plants as source of drugs,” Toxicon, vol. 39, no. 5, pp. 603–613, 2001.
[8]  A. Alkofahi and A. H. Atta, “Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats,” Journal of Ethnopharmacology, vol. 67, no. 3, pp. 341–345, 1999.
[9]  G. Schmeda-Hirschmann and E. Yesilada, “Traditional medicine and gastroprotective crude drugs,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 61–66, 2005.
[10]  F. Mégraud and P. Lehours, “Helicobacter pylori detection and antimicrobial susceptibility testing,” Clinical Microbiology Reviews, vol. 20, no. 2, pp. 280–322, 2007.
[11]  E. C. Senay and R. J. Levine, “Synergism between cold and restraint for rapid production of stress ulcers in rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 124, no. 4, pp. 1221–1223, 1967.
[12]  R. J. Levine, “A method for rapid production of stress ulcers in rats,” in Peptic Ulcer, C. J. Pfeiffer, Ed., pp. 92–97, Munksgaard, Copenhagen, Denmark, 1971.
[13]  G. Vincent, G. Glavin, J. Rutkowski, and W. Paré, “Body orientation, food deprivation and potentiation of restraint induced gastric lesions,” Gastroenterologie Clinique et Biologique, vol. 1, no. 6-7, pp. 539–543, 1977.
[14]  H. W. Davenport, “Salicylate damage to the gastric mucosal barrier,” The New England Journal of Medicine, vol. 276, no. 23, pp. 1307–1312, 1967.
[15]  B. Djahanguiri, “The production of acute gastric ulceration by indomethacin in the rat,” Scandinavian Journal of Gastroenterology, vol. 4, no. 3, pp. 265–267, 1969.
[16]  K. P. Bhargava, M. B. Gupta, and K. K. Tangri, “Mechanism of ulcerogenic activity of indomethacin and oxyphenbutazone,” European Journal of Pharmacology, vol. 22, no. 2, pp. 191–195, 1973.
[17]  C. H. Cho and C. W. Ogle, “The pharmacological differences and similarities between stress- and ethanol-induced gastric mucosal damage,” Life Sciences, vol. 51, no. 24, pp. 1833–1842, 1979.
[18]  P. J. Oates and J. P. Hakkinen, “Studies on the mechanism of ethanol-induced gastric damage in rats,” Gastroenterology, vol. 94, no. 1, pp. 10–21, 1988.
[19]  K. Takagi, S. Okabe, and R. Saziki, “A new method for the production of chronic gastric ulcer in rats and the effect of several drugs on its healing,” Japanese Journal of Pharmacology, vol. 19, no. 3, pp. 418–421, 1970.
[20]  S. Okabe and C. J. P. feiffer, “Chronicity of acetic acid in the rats' stomach,” The American Journal of Digestive Diseases, vol. 14, pp. 619–629, 1972.
[21]  S. Okabe and K. Amagase, “An overview of acetic acid ulcer models: the history and state of the art of peptic ulcer research,” Biological and Pharmaceutical Bulletin, vol. 28, no. 8, pp. 1321–1341, 2005.
[22]  L. J. Hay, R. L. Varco, C. F. Code, and O. F. Wangensteen, “Experimental production of gastric and duodenal ulcers in laboratory animals by intramuscular injection of histamine in beeswax,” The Journal of Surgery, Gynecology and Obstetrics, vol. 74, pp. 70–182, 1942.
[23]  M. Kagoshima and N. S. uguro, “Gastric movements and reserpine- induced ulcersin rats,” Nippon Yakurigaku Zasshi, vol. 80, pp. 231–238, 1982.
[24]  T. Hashizume, K. Hirokawa, and S. Aibara, “Pharmacological and histological studies of gastric mucosal lesion induced by serotonin in rats,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 236, no. 1, pp. 96–108, 1978.
[25]  K. J. LePard and R. L. Stephens, “Serotonin inhibits gastric acid secretion through a 5-hydroxytryptamine1-like receptor in the rat,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 3, pp. 1139–1147, 1994.
[26]  H. Shay, S. A. Komarov, S. S. Fels, D. Meranze, M. Gruenstein, and H. Siplet, “A simple method for the uniform production of gastric ulceration in the rat,” Gastroenterology, vol. 5, pp. 43–61, 1945.
[27]  S. Oka, Oginok, I. Hobara et al., “Role of reactive oxygen species in diethyldilthiocarbamate induced gastric ulcer in the rat,” Experentia, vol. 46, pp. 281–283, 1990.
[28]  D. I. Shah, D. D. Santani, and S. S. Goswami, “A novel use of methylene blue as a pharmacological tool,” Journal of Pharmacological and Toxicological Methods, vol. 54, no. 3, pp. 273–277, 2006.
[29]  K. Wada, Y. Kamisaki, M. Kitano, Y. Kishimoto, K. Nakamoto, and T. Itoh, “A new gastric ulcer model induced by ischemia-reperfusion in the rat: role of leukocytes on ulceration in rat stomach,” Life Sciences, vol. 59, no. 19, pp. 295–301, 1996.
[30]  S. Szabo, “Animal model of human disease. Duodenal ulcer disease: cysteamine-induced acute and chronic duodenal ulcer in the rat,” American Journal of Pathology, vol. 73, no. 1, pp. 273–276, 1978.
[31]  K. Takeuchi, O. Furukawa, H. Tanaka, and S. Okabe, “A new model of duodenal ulcers induced in rats by indomethacin plus histamine,” Gastroenterology, vol. 90, no. 3, pp. 636–645, 1986.
[32]  Y. Naito, T. Yoshikawa, T. Yoneta et al., “A new gastric ulcer model in rats produced by ferrous iron and ascorbic acid injection,” Digestion, vol. 56, no. 6, pp. 472–478, 1995.
[33]  P. C. Konturek, T. Brzozowski, J. Kania et al., “Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat,” European Journal of Pharmacology, vol. 472, no. 3, pp. 213–220, 2003.
[34]  A. K. Nyarko, I. J. Asiedu-Gyekye, and A. A. Sittie, A Manual of Harmonised Procedures for Assessing the Safety, Efficacy and Quality of Plant Medicines in Ghana, Yemens Press, Accra, Ghana, 2005.
[35]  P. Shayne and W. S. Miller, “Gastritis and Peptic Ulcer Disease: Treatment & Medication,” January 2011, Medscape, http://emedicine.medscape.com/article/776460-treatment.
[36]  S. Demirbilek, I. Gürses, N. Sezgin, A. Karaman, and N. Gürbüz, “Protective effect of polyunsaturated phosphatidylcholine pretreatment on stress ulcer formation in rats,” Journal of Pediatric Surgery, vol. 39, no. 1, pp. 57–62, 2004.
[37]  D. A. Brodie and H. M. Hanson, “A study of the factors involved in the production of gastric ulcers by the restraint technique,” Gastroenterology, vol. 38, pp. 353–360, 1960.
[38]  H. Kitagawa, M. Fujiwara, and Y. Osumi, “Effects of water-immersion stress on gastric secretion and mucosal blood flow in rats,” Gastroenterology, vol. 77, no. 2, pp. 298–302, 1979.
[39]  P. H. Guth, “Gastric blood flow in restraint stress,” The American Journal of Digestive Diseases, vol. 17, no. 9, pp. 807–813, 1972.
[40]  M. N. Peters and C. T. Richardson, “Stressful life events, acid hypersecretion, and ulcer disease,” Gastroenterology, vol. 84, no. 1, pp. 114–119, 1983.
[41]  D. A. Brodie, R. W. Marshall, and O. M. Moreno, “Effect of restraint on gastric acidity in the rat,” The American Journal of Physiology, vol. 202, pp. 812–814, 1962.
[42]  K. D. Rainsford, “The effects of 5-lipoxygenase inhibitors and leukotriene antagonists on the development of gastric lesions induced by nonsteroidal antiinflammatory drugs in mice,” Agents and Actions, vol. 21, no. 3-4, pp. 316–319, 1987.
[43]  J. Hayllar and I. Bjarnason, “NSAIDs, COX-2 inhibitors, and the gut,” The Lancet, vol. 346, no. 8974, pp. 521–522, 1995.
[44]  J. L. Wallace, W. McKnight, B. K. Reuter, and N. Vergnolle, “NSAID-Induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2,” Gastroenterology, vol. 119, no. 3, pp. 706–714, 2000.
[45]  B. J. R. Whittle, “Gastrointestinal effects of nonsteroidal anti-inflammatory drugs,” Fundamental and Clinical Pharmacology, vol. 17, no. 3, pp. 301–313, 2003.
[46]  D. Lamarque, “Pathogenesis of gastroduodenal lesions induced by non-steroidal anti-inflammatory drugs,” Gastroenterologie Clinique et Biologique, vol. 28, pp. C18–C26, 2004.
[47]  S. Linuma, H. Ichikawa, M. Yasuda, and S. Takahashi, “Peroxidation and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats,” Gut, vol. 34, pp. 732–737, 1993.
[48]  E. Williamson, D. Okpako, and F. Evans, Pharmacological Methods Inphytotherapy Research, pp. 25–45, John Wiley & Sons, Chichester, UK, 1986.
[49]  T. Urushidani, Y. Kasuya, and S. Okabe, “The mechanism of aggravation of indomethacin-induced gastric ulcers by adrenalectomy in the rat,” Japanese Journal of Pharmacology, vol. 29, no. 5, pp. 775–780, 1979.
[50]  G. Sener, K. Paskaloglu, and G. Ayanoglu-Dülger, “Protective effect of increasing doses of famotidine, omeprazole, lansoprazole, and melatonin against ethanol-induced gastric damage in rats,” Indian Journal of Pharmacology, vol. 36, no. 3, pp. 171–174, 2004.
[51]  G. B. Glavin and S. Szabo, “Experimental gastric mucosal injury: laboratory models reveal mechanisms of pathogenesis and new therapeutic strategies,” The FASEB Journal, vol. 6, no. 3, pp. 825–831, 1992.
[52]  M. G. Repetto and S. F. Llesuy, “Antioxidant properties of natural compounds used in popular medicine for gastric ulcers,” Brazilian Journal of Medical and Biological Research, vol. 35, no. 5, pp. 523–534, 2002.
[53]  F. Marotta, H. Tajiri, P. Safran, E. Fesce, and G. Ideo, “Ethanol-related gastric mucosal damage: evidence of a free radical-mediated mechanism and beneficial effect of oral supplementation with Bionormalizer, a novel natural antioxidant,” Digestion, vol. 60, no. 6, pp. 538–543, 1999.
[54]  S. Kato, T. Kawase, J. Alderman, N. Inatomi, and C. S. Lieber, “Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats,” Gastroenterology, vol. 98, no. 1, pp. 203–210, 1990.
[55]  R. Nordmann, “Alcohol and antioxidant systems,” Alcohol and Alcoholism, vol. 29, no. 5, pp. 513–522, 1994.
[56]  E. Marhuenda, M. J. Martin, and C. A. de la Lastra, “Antiulcerogenic activity of aescine in different experimental models,” Phytotherapy Research, vol. 7, no. 1, pp. 13–16, 1993.
[57]  J. J. Massignani, M. Lemos, E. L. Maistro et al., “Antiulcerogenic activity of the essential oil of Baccharis dracunculifolia on different experimental models in rats,” Phytotherapy Research, vol. 23, no. 10, pp. 1355–1360, 2009.
[58]  R. Hernandez-Munoz, C. Montiel-Ruiz, and O. Vazquez-Martinez, “Gastric mucosal cell proliferation in ethanol-induced chronic mucosal injury is related to oxidative stress and lipid peroxidation in rats,” Laboratory Investigation, vol. 80, no. 8, pp. 1161–1169, 2000.
[59]  T. Brzozowski, P. C. Konturek, S. J. Konturek et al., “Involvement of endogenous cholecystokinin and somatostatin in gastroprotection induced by intraduodenal fat,” Journal of Clinical Gastroenterology, vol. 27, no. 1, pp. 125–137, 1998.
[60]  D. Hollander, A. Tarnawski, W. J. Krause, and H. Gergely, “Protective effect of sucralfate against alcohol-induced gastric mucosal injury in the rat. Macroscopic, histologic, ultrastructural, and functional time sequence analysis,” Gastroenterology, vol. 88, no. 1, pp. 366–374, 1985.
[61]  S. Okabe, J. L. A. Roth, and C. J. Pfeiffer, “A method for experimental, penetrating gastric and duodenal ulcers in rats—observations on normal healing,” The American Journal of Digestive Diseases, vol. 16, no. 3, pp. 277–284, 1971.
[62]  S. Okabe, J. L. A. Roth, and C. J. Pfeiffer, “Differential healing periods of the acetic acid ulcer model in rats and cats,” Experientia, vol. 27, no. 2, pp. 146–148, 1971.
[63]  J. Watt, “The mechanism of histamine ulceration in the guinea pig,” Gastroenterology, vol. 37, pp. 741–759, 1959.
[64]  C. H. Cho and C. J. Pfeiffer, “Gastrointestinal ulceration in the guinea pig in response to dimaprit, histamine, and H1- and H2-blocking agents,” Digestive Diseases and Sciences, vol. 26, no. 4, pp. 306–311, 1981.
[65]  S. Singh, “Evaluation of gastric anti-ulcer activity of fixed oil of Ocimum basilicum Linn. and its possible mechanism of action,” Indian Journal of Experimental Biology, vol. 37, no. 3, pp. 253–257, 1999.
[66]  M. B. Gupta, K. K. Tangri, and K. P. Bhargava, “Mechanism of ulcerogenic activity of reserpine in albino rats,” European Journal of Pharmacology, vol. 27, no. 2, pp. 269–272, 1974.
[67]  A. S. Salim, “Protection against stress-induced acute gastric mucosal injury by free radical scavengers,” Intensive Care Medicine, vol. 17, no. 8, pp. 455–460, 1991.
[68]  A. Lomniczi, E. Cebral, G. Canteros, S. M. McCann, and V. Rettori, “Methylene blue inhibits the increase of inducible nitric oxide synthase activity induced by stress and lipopolysaccharide in the medial basal hypothalamus of rats,” NeuroImmunoModulation, vol. 8, no. 3, pp. 122–127, 2000.
[69]  M. Pfaffendorf, T. A. Bruning, H. D. Batink, and P. A. van Zwieten, “The interaction between methylene blue and the cholinergic system,” British Journal of Pharmacology, vol. 122, no. 1, pp. 95–98, 1997.
[70]  V. Kumar, A. K. Abbas, and N. Fausto, “Pathologic basis of disease,” in Robbins and Cotran, pp. 787–802, New Delhi Saunders, New Delhi , India, 7th edition, 2003.
[71]  A. Onen, Z. Kanay, C. Guzel, D. Kurt, and K. Ceylan, “The effects of allopurinol on stomach mucosal barrier of rats subjected to ischemia-reperfusion,” Turkish Journal of Medical Sciences, vol. 30, no. 5, pp. 449–452, 2000.
[72]  H. Selye and S. Szabo, “Experimental model for production of perforating duodenal ulcers by cysteamine in the rat,” Nature, vol. 244, no. 5416, pp. 458–459, 1973.
[73]  Y. Ishii, Y. Fujii, and M. Homma, “Gastric acid stimulating action of cysteamine in the rat,” European Journal of Pharmacology, vol. 36, no. 2, pp. 331–336, 1976.
[74]  H. Tamaki, Y. Onoda, and T. Kashida, “Gastric secretion and duodenal ulcer formation induced by cysteamine in rats,” Japanese Journal of Pharmacology, vol. 28, no. 4, pp. 647–649, 1978.
[75]  D. Stiel, D. J. Murray, and T. J. Peters, “Mucosal enzyme activities, with special reference to enzymes implicated in bicarbonate secretion, in the duodenum of rats with cysteamine-induced ulcers,” Clinical Science, vol. 64, no. 3, pp. 341–347, 1983.
[76]  S. S. Poulsen, P. S. Olsen, and P. Kirkegaard, “Healing of cysteamine-induced duodenal ulcers in the rat,” Digestive Diseases and Sciences, vol. 30, no. 2, pp. 161–167, 1985.
[77]  T. Khomenko, S. Szabo, X. Deng, H. Ishikawa, G. J. Anderson, and G. D. McLaren, “Role of iron in the pathogenesis of cysteamine-induced duodenal ulceration in rats,” American Journal of Physiology, vol. 296, no. 6, pp. G1277–G1286, 2009.
[78]  L. M. Lichtenberger, S. Szabo, and E. S. Reynolds, “Gastric emptying in the rat is inhibited by the duodenal ulcerogens, cysteamine and propionitrile,” Gastroenterology, vol. 73, no. 5, pp. 1072–1076, 1977.
[79]  H. I. Tahsildar, J. E. Biaglow, M. M. Kligerman, and M. E. Varnes, “Factors influencing the oxidation of the radioprotector WR-1065,” Radiation Research, vol. 113, no. 2, pp. 243–251, 1988.
[80]  J. E. Biaglow, R. W. Issels, and L. E. Gerweck, “Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection,” Radiation Research, vol. 100, no. 2, pp. 298–312, 1984.
[81]  G. Capozzi and G. Modena, “Oxidation of thiols,” in The Chemistry of the Thiol Group, S. Patai, Ed., pp. 785–840, John Wiley & Sons, London, UK, 1974.
[82]  K. D. Held and J. E. Biaglow, “Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells,” Radiation Research, vol. 139, no. 1, pp. 15–23, 1994.
[83]  T. Khomenko, X. Deng, M. R. Jadus, and S. Szabo, “Effect of cysteamine on redox-sensitive thiol-containing proteins in the duodenal mucosa,” Biochemical and Biophysical Research Communications, vol. 309, no. 4, pp. 910–916, 2003.
[84]  B. Halliwell and J. M. C. Gutteridge, “Free radicals, aging and diseases,” in Free Radicals in Biology and Medicine, B. Halliwell and J. M. C. Gutteridge, Eds., pp. 416–508, Clarendon Press, Oxford, UK, 1989.
[85]  P. S. Olsen, P. Kirkegaard, J. Christiansen, and S. S. Poulsen, “Healing of acute and chronic experimental ulcer in rat,” Scandanivial Journal of Gastroenterology, vol. I7, no. 78, p. 1250, 1982.
[86]  P. C. H. Konturek, T. Brzozowski, S. J. Konturek et al., “Mouse model of Helicobacter pylori infection: studies of gastric function and ulcer healing,” Alimentary Pharmacology and Therapeutics, vol. 13, no. 3, pp. 333–346, 1999.
[87]  N. S. Parmar and J. K. Desai, “A review of the current methodology for the evaluation of gastric and duodenal anti ulcer agents,” Indian Journal of Pharmacology, vol. 25, pp. 120–135, 1993.
[88]  G. Morini and D. Grandi, “Methods to measure gastric mucosal lesions in the rat,” Current Protocols in Toxicology, 2010.
[89]  H. A. Khan, “Computer-assisted visualization and quantitation of experimental gastric lesions in rats,” Journal of Pharmacological and Toxicological Methods, vol. 49, no. 2, pp. 89–95, 2004.
[90]  K. Takagi and S. Okabe, “The effects of drugs on the production and recovery processes of the stress ulcer,” Japanese Journal of Pharmacology, vol. 18, no. 1, pp. 9–11, 1968.
[91]  A. K. Ganguly, “A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats,” Experientia, vol. 25, no. 11, p. 1224, 1969.
[92]  J. B. Dekanski, A. Macdonald, P. Sacra, and D. V. Parke, “Effects of fasting, stress and drugs on gastric glycoprotein synthesis in the rat,” British Journal of Pharmacology, vol. 55, no. 3, pp. 387–392, 1975.
[93]  J. K. Desai, R. K. Goyal, and N. S. Parmar, “Characterization of dopamine receptor subtypes involved in experimentally induced gastric and duodenal ulcers in rats,” Journal of Pharmacy and Pharmacology, vol. 51, no. 2, pp. 187–192, 1999.
[94]  P. A. Nwafor, F. K. Okwuasaba, and L. G. Binda, “Antidiarrhoeal and antiulcerogenic effects of methanolic extract of Asparagus pubescens root in rats,” Journal of Ethnopharmacology, vol. 72, no. 3, pp. 421–427, 2000.
[95]  S. K. Kulkarni, Hand Book of Experimental Pharmacology, Vallabh Prakashan, New Delhi, India, 3rd edition, 2002.
[96]  S. F. Andrade, D. Antoniolli, E. Comunello, L. G. V. Cardoso, J. C. T. Carvalho, and J. K. Bastos, “Antiulcerogenic activity of crude extract, fractions and populnoic acid isolated from Austroplenckia populnea (Celastraceae),” Zeitschrift fur Naturforschung C, vol. 61, no. 5-6, pp. 329–333, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133