全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Articular Cartilage Gene Expression after Coxofemoral Joint Luxation in the Dog

DOI: 10.1155/2013/936317

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined the relationship between days of hip luxation and the expression of various mRNA. Twenty-six articular cartilages were used in the experiment: 3 samples were from normal dogs and 23 samples were collected from the femoral heads of hips that had been luxated for different lengths of time. Ten mRNA, including nonapoptotic genes (AGG, COL2A1, MMP-3, HAS-1, HAS-2, and TIMP-1) and apoptotic genes (BAX, BCL-2, CAS-3, and CAS-9), were studied for their expression using real-time PCR. We found very high correlation between expression level and luxation days ( ) in COL2A1, MMP-3, HAS-1, HAS-2, TIMP-1, BAX, and CAS-9, while the others (AGG, BCL-2, and CAS-3) also showed high correlation ( ). And we found a significant difference ( ) in the expression of transcripts depending on the number of luxation days. In conclusion, a delay in joint reduction may increase the chances of development of osteoarthritis. 1. Introduction Coxofemoral luxation (hip luxation) is relative common orthopedic problem in dogs. The major causes of this problem are accidents (vehicle accidents ranged from 59 to 83%) and falls from height [1]. In our data recorded since 2006, 80% were caused by vehicle accidents, 10% caused by falling from height, 7% caused by dog bite, and 3% caused by their leg became caught in the wires of a cage (data not yet published). It is well known that ligament rupture, joint instability, and articular cartilage injury can cause osteoarthritis (OA). Articular cartilage and surrounding soft tissues (i.e., tendon, ligament, or joint capsule) are injured when the hip joint is luxated, and during the reduction procedure as well as is well known, the goals of treatment for luxation of the hip are to reduce the dislocation with as little damage to the articular surface as possible and to stabilize the joint sufficiently to allow soft tissue healing, with the expectation of normal clinical function. The first choice of treatment of simple joint luxation is reduction (closed or open), but in severe cases involving ligament rupture, surgery is required to repair the ligament and joint capsule [2]. To predict the chances of a joint developing OA, several criteria need to be considered. However, we believe that the period of luxation before reduction is another important criterion because it has a direct effect on articular cartilage metabolism. During joint luxation, the articular cartilage is unable to receive nutrients from, or release waste products into, the synovial fluid. This is the cause of the OA mechanism in joints [3, 4]. This study aims to

References

[1]  A. W. P. Basher, M. C. Walter, and C. D. Newton, “Coxofemoral luxation in the dog and cat,” Veterinary Surgery, vol. 15, pp. 356–362, 1986.
[2]  D. L. Piermattei, G. L. Flo, and C. E. DeCamp, Handbook of Small Animal Orthopedics and Fracture Repair, Saunders, St Louis, Mo, USA, 4 edition, 2006.
[3]  M. Harris-Hayes and N. K. Royer, “Relationship of acetabular dysplasia and femoroacetabular impingement to hip osteoarthritis: a focused review,” PM & R, vol. 3, no. 11, pp. 1055.e1–1067.e1, 2011.
[4]  W. C. Kramer, K. J. Hendricks, and J. Wang, “Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention,” International Journal of Clinical and Experimental Medicine, vol. 4, no. 4, pp. 285–298, 2011.
[5]  P. Siengdee, K. Nganvongpanit, P. Pothacharoen, S. Chomdej, S. Mekchay, and S. Ong-Chai, “Effects of bromelain on cellular characteristics and expression of selected genes in canine in vitro chondrocyte culture,” Veterinarni Medicina, vol. 55, no. 11, pp. 551–560, 2010.
[6]  K. Nganvongpanit, P. Chaochird, P. Siengdee et al., “In vitro suppression of the MMP-3 gene in normal and cytokine-treated human chondrosarcoma using small interfering RNA,” Journal of Orthopaedic Surgery and Research, vol. 4, article 45, 2009.
[7]  L. C. Tetlow, D. J. Adlam, and D. E. Woolley, “Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes,” Arthritis & Rheumatism, vol. 44, pp. 585–594, 2001.
[8]  T. E. Hardingham and H. Muir, “The specific interaction of hyaluronic acid with cartilage proteoglycans,” Biochimica et Biophysica Acta, vol. 279, no. 2, pp. 401–405, 1972.
[9]  H. Nagase and M. Kashiwagi, “Aggrecanases and cartilage matrix degradation,” Arthritis Research and Therapy, vol. 5, no. 2, pp. 94–103, 2003.
[10]  A. D. Recklies, C. White, L. Melching, and P. J. Roughley, “Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells,” Biochemical Journal, vol. 354, no. 1, pp. 17–24, 2001.
[11]  H. Nagase, “Activation mechanisms of matrix metalloproteinases,” Biological Chemistry, vol. 378, no. 3-4, pp. 151–160, 1997.
[12]  D. D. Dean, J. Martel-Pelletier, J.-P. Pelletier, D. S. Howell, and J. F. Woessner Jr., “Evidence for metalloproteinase inhibitor imbalance in human osteoarthritic cartilage,” Journal of Clinical Investigation, vol. 84, no. 2, pp. 678–685, 1989.
[13]  D. L. Vaux and S. J. Korsmeyer, “Cell death in development,” Cell, vol. 96, no. 2, pp. 245–254, 1999.
[14]  H. A. Kim and F. J. Blanco, “Cell death and apoptosis in ostearthritic cartilage,” Current Drug Targets, vol. 8, no. 2, pp. 333–345, 2007.
[15]  S. P. Grogan and D. D. D'Lima, “Joint aging and chondrocyte cell death,” Journal of Clinical Rheumatology, vol. 5, pp. 199–214, 2010.
[16]  W. C. Earnshaw, L. M. Martins, and S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates, and functions during apoptosis,” Annual Review of Biochemistry, vol. 68, pp. 383–424, 1999.
[17]  N. A. Thornberry and Y. Lazebnik, “Caspases: enemies within,” Science, vol. 281, no. 5381, pp. 1312–1316, 1998.
[18]  A. Roulston, R. C. Marcellus, and P. E. Branton, “Viruses and apoptosis,” Annual Review of Microbiology, vol. 53, pp. 577–628, 1999.
[19]  Y. Tsujimoto and S. Shimizu, “Bcl-2 family: life-or-death switch,” FEBS Letters, vol. 466, no. 1, pp. 6–10, 2000.
[20]  J. M. Adams and S. Cory, “Life-or-death decisions by the Bcl-2 protein family,” Trends in Biochemical Sciences, vol. 26, no. 1, pp. 61–66, 2001.
[21]  K. G. Wolter, Y.-T. Hsu, C. L. Smith, A. Nechushtan, X.-G. Xi, and R. J. Youle, “Movement of Bax from the cytosol to mitochondria during apoptosis,” Journal of Cell Biology, vol. 139, no. 5, pp. 1281–1292, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413