全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computer Tomographic Illustration of the Development of the Pulmonary Function in Bovine Neonates until the Twenty-First Day Postnatum

DOI: 10.1155/2013/157960

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to analyze the development of the lung in newborn calves. The sample consisted of 28 Holstein Friesians calves which were examined clinically, and their chest segment was measured with computed tomography. The tests were performed on the first, sixth, and twelfth hours of life and after the first, second, and third weeks. Also, blood gases and blood counts were determined. Besides Kolmogorov-Smirnov tests, analyses of variance, t-tests (on a significance level of ), and correlation analyses were used. The most significant changes occurred between birth and the first hour. However, there were significant differences in the gas filling between cranial and caudal and between dorsal and ventral parenchyma segments. This difference remained over the entire study period. At the end of the first week between 85 and 93% were involved in gas exchange. Only after the completion of the second week of life, the air supply was achieved throughout the whole lung. The pO2, pCO2, and pH values confirmed this. This study shows that a healthy bovine neonate needs about 2 weeks before all lung units are integrated into the gas exchange. This explains why calves in unfavorable environments often suffer from pulmonary affections. 1. Introduction In many publications, mainly from the last 70 years, researchers have addressed questions regarding the developmental anatomy and physiology of the fetal and postnatal lungs. Essential research to understand the development of pulmonary tissues directly post natum was driven by the team around Barcroft [1–3]. The fundamental cross-species results of their and the following research, mainly studied in sheep and lambs, are still valid today [4–17]. Based on the present knowledge, it has generally been agreed so far that with the first breaths lung areas progressively start filling with gas, which is completed after a few hours [18–23]. Thus, the oxygenation of neonatal bodies is secured. The question, whether a full ventilationof the lungs is reached within 12 hours p. n. for healthy, vital bovine neonates, has not yet been finally clarified [24–26]. Various research teams presume due to histological findings that the lung maturation in the alveoli stage still takes place in the first post uterine phase in neonatal ruminants [16, 27–30]. Serial radiographic-sonographic studies in vivo on native vital, healthy bovine individuals could not reveal whether 12 hours after birth the pulmonary tissue is fully ventilated [31]. Therefore, the relevant question is, at which time all alveolar regions in bovine neonates

References

[1]  J. Barcroft, “Fetal circulation and respiration,” Physiological Reviews, vol. 16, pp. 103–128, 1936.
[2]  J. Barcroft, D. H. Barron, A. T. Cowie, and P. H. Forsham, “The oxygen supply oft he foetal brain oft he sheep and the effect of asphyxia on foetal respiratory movement,” Journal of Physiology, vol. 97, pp. 338–346, 1940.
[3]  J. Barcroft, Researches on Prenatal Live, Oxford Press, 1946.
[4]  G. S. Dawes, J. C. Mott, J. G. Widdicombe, and D. G. Wyatt, “Changes in the lungs of the new-born lamb,” The Journal of Physiology, vol. 121, no. 1, pp. 141–162, 1953.
[5]  G. S. Dawes, “Oxygen supply and consumption in late fetal life and the onset of breathing in birth in Fenn WO,” in Handbook of Physiology, H. Rahn, Ed., vol. 2, pp. 1313–1328, 1965.
[6]  G. S. Dawes, S. L. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen-Thomas, and J. T. Reeves, “Hypoxaemia and aortic chemoreceptor function in foetal lambs,” Journal of Physiology, vol. 201, no. 1, pp. 105–116, 1969.
[7]  J. Facwitt, J. Lind, and C. Wegelins, “The first breath,” Acta Paediatrica Scandinavica, vol. 122, pp. 1–17, 1960.
[8]  S. Cassin, G. S. Dawes, and B. B. Ross, “Pulmonary blood flow and vascular resistance in immature foetal lambs,” Journal of physiology, vol. 171, pp. 80–89, 1964.
[9]  W. F. Howatt, P. W. Humphreys, I. C. Normand, and L. B. Strang, “Ventilation of liquid by the fetal lamb during asphyxia,” Journal of Applied Physiology, vol. 20, no. 3, pp. 496–502, 1965.
[10]  H. S. Harned Jr., R. T. Herrington, and J. I. Ferreiro, “The effect of immersion and temperature on respiration in newborn lambs,” Pediatrics, vol. 151, pp. 707–714, 1970.
[11]  B. D. Fletcher, B. F. Sachs, and R. V. Kotas, “Radiologic demonstration of postnatal liquid in the lungs of newborn lambs,” Pediatrics, vol. 46, no. 2, pp. 252–258, 1970.
[12]  H. Bartels, K. Riegel, J. Wenner, and H. Wulf, Perinatale Atmung, Springer, Berlin, Germany, 1972.
[13]  J. Egberts, P. Fontijne, and G. C. van der Weijden, “Premature changes in surface activity in lung fluid of fetal lambs,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 12, no. 1, pp. 59–67, 1981.
[14]  R. E. Oliver, “Of labour and the lungs,” Archives of Disease in Childhood, vol. 56, pp. 650–664, 1981.
[15]  P. J. Berger, A. M. Walker, R. Horne et al., “Phase respiratory activity in the fetal lamb during late gestation and labour .,” Respiration Physiology, vol. 65, pp. 55–68, 1988.
[16]  S. J. Flecknoe, M. J. Wallace, M. L. Cock, R. Harding, and S. B. Hooper, “Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep,” The American Journal of Physiology, vol. 285, no. 3, pp. L664–L670, 2003.
[17]  R. Ridsdale and M. Post, “Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells,” The American Journal of Physiology, vol. 287, no. 4, pp. L743–L751, 2004.
[18]  J. Lind, “Changes in the circulation and lungs at birth,” Acta Paediatrica Scandinavica, vol. 49, supplement 122, pp. 39–52, 1960.
[19]  J. Facwitt, J. Linden, and C. Wegekins, “The first breath. A preliminary communication description some methods of investigastion of the first breath of a baby and results obtained from therm,” Acta Paediatrica, vol. 123, pp. 5–17, 1960.
[20]  P. Karlberg, R. P. Cherry, F. E. Excardo, and G. Koch, “Respiratory studies in newborn infants. II: pulmonary ventilations and mechanics of breathing in the first minutes of life, including the onset of respiration,” Acta Paediatrica Scandinavica, vol. 51, pp. 121–136, 1962.
[21]  A. D. Milner and H. Vyas, “Lung expansion at birth,” Journal of Pediatrics, vol. 101, no. 6, pp. 879–886, 1982.
[22]  C. W. Leffler, J. R. Hessler, and R. S. Green, “The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis,” Pediatric Research, vol. 18, no. 10, pp. 938–942, 1984.
[23]  I. M. Kuipers, W. J. Maertzdorf, D. S. De Jong, M. A. Hanson, and C. E. Blanco, “Initiation and maintenance of continuous breathing at birth,” Pediatric Research, vol. 42, no. 2, pp. 163–168, 1997.
[24]  J. T. Reeves and J. E. Leathers, “Circulatory changes following birth of calf and the effect of hypoxia,” Circulation Research, vol. 15, pp. 343–354, 1964.
[25]  H. A. Schoon, Lungen- und Plazentareifung beim Rind in der Endphase der Gravidit?t, 1989.
[26]  R. Reinhold, “Struktur und Funktion der sich entwickelnden bovinen Lunge,” Pneumologie, vol. 61, pp. 428–483, 2007.
[27]  L. E. De Zabala and D. E. Weinmann, “Prenatal development of the bovin lung,” Anatomia, Histologia, Embryologia, vol. 13, pp. 1–14, 1984.
[28]  H. A. Schoon and D. Kikovic, “Morphologischer Nachweis und pathogenetische Bewertung von Fruchtwasseraspirationen hinsichtlich der Diagnose “pulmonale Asphyxie” bei neugeborenen K?lbern und Fohlen,” Deutsche Tier?rztliche Wochenschrift, vol. 94, pp. 73–76, 1987.
[29]  W. L. Castleman and J. C. Lay, “Morphometric and ultrastructural study of postnatal lung growth and development in calves,” The American Journal of Veterinary Research, vol. 51, no. 5, pp. 789–795, 1990.
[30]  C. Uystepruyst, P. Reinhold, J. Coghe, F. Bureau, and P. Lekeux, “Mechanics of the respiratory system in healthy newborn calves using impulse oscillometry,” Research in Veterinary Science, vol. 68, no. 1, pp. 47–55, 2000.
[31]  C. Jung and H. Bostedt, “Thoracic ultrasonography technique in newborn calves and description of normal and pathological findings,” Veterinary Radiology and Ultrasound, vol. 45, no. 4, pp. 331–335, 2004.
[32]  V. Apgar, “A proposal for a new method of evaluation of the newborn infant,” Current Researches in Anesthesia & Analgesia, vol. 32, no. 4, pp. 260–267, 1953.
[33]  K. Herfen and H. Bostedt, “Zum S?ure-Basen-Status bei neugeborenen K?lbern in den ersten Lebenstagen unter Berücksichtigung differenter Vitalit?tssituationen,” Berliner und Münchener Tier?rztliche Wochenschrif, vol. 112, pp. 166–171, 1996.
[34]  B. R. Richter and H. Bostedt, “Evaluation of an appropriate puncture site for arterial blood sampling to allow repeated blood gas-analysis in the newborn calf,” Tierarztliche Praxis Ausgabe, vol. 38, no. 1, pp. 17–22, 2010.
[35]  B. Linke, Computertromographische Untersuchungen zur Erfassung der Lungenfunktion bei vitalen K?lbern in der frühen postnatalen Periode [M.S. thesis], Universit?t Gie?en, 2009.
[36]  A. E. Barclay, J. Barcroft, D. H. Barron, K. J. Franklin, and M. M. Prichard, “Pulmonary circulation times before and after functional closure of the ductus arteriosus,” Journal of Physiology, vol. 101, pp. 375–377, 1942.
[37]  K. Walser, “Anatomische und physiologische Grundlagen des Neugeborenen: Blut,” in Neugeborenen und S?uglingskrankheiten der Tiere, K. Walser and H. Bostedt, Eds., Enke, Stuttgart, Germany, 1990.
[38]  H. McNamara and N. Johnson, “The effect of uterine contractions on fetal oxygen saturation,” British Journal of Obstetrics and Gynaecology, vol. 102, no. 8, pp. 644–647, 1995.
[39]  D. G. Alcorn, T. M. Adamson, J. E. Maloney, and R. M. Robinson, “A morphologic and morphometric analysis of fetal lung development in the sheep,” Anatomical Record, vol. 201, no. 4, pp. 655–667, 1981.
[40]  A. J. Lechner and N. Banchero, “Advanced pulmonary development in newborn guinea pigs,” The American Journal of Anatomy, vol. 163, no. 3, pp. 235–246, 1982.
[41]  W. Künzel and K. H. Wulf, Physiologie und Pathologie der Geburt II, Urbau und Schwarenberg München Wien Baltimore, 1990.
[42]  J. P. Mortola, Respiratory Physiology of Newborn Mannuals, John Hopkins University Press, London, UK, 2001.
[43]  J. Varga, J. Mester, L. Borzsonyl et al., “Adaptation of respiration to extrauterine life in healthy newborn calves,” Reproduction in Domestic Animals, vol. 34, pp. 377–379, 1999.
[44]  J. Lind, T. Peltonen, L. T?rnwall, and C. Wegelius, “R?ntgenologische Lungenbefunde beim ersten Atemzug des Neugeborenen,” Zeitschrift für Kinderheilkunde, vol. 87, no. 6, pp. 568–578, 1963.
[45]  A. Dragomir, Y. Akay, A. K. Curran, and M. Akay, “Investigating the complexity of respiratory patterns during the laryngeal chemoreflex,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 17, 2008.
[46]  K. Herfen and H. Bostedt, “Die Korrelation zwischen klinischer und labordiagnostischer Vitalit?tsbewertung beim neugeborenen Kalb unter besonderer Berücksichtigung von Geburtsl?nge und Geburtsart,” Wiener Tier?rztliche Monatsschrift, vol. 86, pp. 255–261, 1999.
[47]  H. Bostedt, “Erstversorgung des neugeborenen Kalbes,” in Fruchtbarkeitsmanagement Beim Rind, H. Bostedt, Ed., DLG, Frankfurt, Germany, 2006.
[48]  E. Dean, “Effect of body position on pulmonary function,” Physical Therapy, vol. 65, no. 5, pp. 613–618, 1985.
[49]  A. M. Rudolph and M. A. Heymann, “Circulatory changes during growth in the fetal lamb,” Circulation Research, vol. 26, no. 3, pp. 289–299, 1970.
[50]  A. M. Perks and S. Cassin, “The effects of arginine vasopressin and epinephrine on lung liquid production in fetal goats,” Canadian Journal of Physiology and Pharmacology, vol. 67, no. 5, pp. 491–498, 1989.
[51]  M. J. Wallace, S. B. Hooper, and R. Harding, “Regulation of lung liquid secretion by arginine vasopressin in fetal sheep,” The American Journal of Physiology, vol. 258, no. 1, pp. R104–R111, 1990.
[52]  L. B. Strang, “Fetal lung liquid: secretion and reabsorption,” Physiological Reviews, vol. 71, no. 4, pp. 991–1016, 1991.
[53]  S. B. Hooper and R. Harding, “Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung,” Clinical and Experimental Pharmacology and Physiology, vol. 22, no. 4, pp. 235–247, 1995.
[54]  F. Sinowatz, “Atmungsorgane,” in Lehrbuch Der Embryologie Der Haustiere, I. Rüsse and F. Sinowatz, Eds., Paul Parey Verlag, Berlin, Germany, 1991.
[55]  S. J. Flecknoe, K. J. Crossley, G. M. Zuccala et al., “Increased lung expansion alters lung growth but not alveolar epithelial cell differentiation in newborn lambs,” The American Journal of Physiology, vol. 292, no. 2, pp. L454–L461, 2007.
[56]  S. Yu, P. G. R. Harding, N. Smith, and F. Possmayer, “Bovine pulmonary surfactant: chemical composition and physical properties,” Lipids, vol. 18, no. 8, pp. 522–529, 1983.
[57]  J. Pérez-Gil, “Molecular interactions in pulmonary surfactant films,” Biology of the Neonate, vol. 81, no. 1, pp. 6–15, 2002.
[58]  J. Johansson and T. Curstedt, “Molecular structures and interactions of pulmonary surfactant components,” European Journal of Biochemistry, vol. 244, no. 3, pp. 675–693, 1997.
[59]  Y. Tian, R. Zhou, J. E. Rehg, and S. Jackowski, “Role of phosphocholine cytidylyltransferase α in lung development,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 975–982, 2007.
[60]  O. Szenci, M. A. M. Taverne, and E. Takács, “A review of 126 Caesarean sections by blood gas and the acid-base status of newborn calves,” Theriogenology, vol. 32, no. 4, pp. 667–673, 1989.
[61]  B. R. Richter, Prognostische Aussagekraft arterieller gegenüber ven?ser Blutgasparameter im wiederholten Me?rhythmus hinsichtlich des Schweregrades des neonatalen Atemnotsyndrom beim Kalb [M.S. thesis], Universit?t Gie?en, 2005.
[62]  U. Bleul, B. Lejeune, S. Schwantag, and W. K?hn, “Blood gas and acid-base analysis of arterial blood in 57 newborn calves,” Veterinary Record, vol. 161, no. 20, pp. 688–691, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133