全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Survey for Highly Pathogenic Avian Influenza from Poultry in Two Northeastern States, Nigeria

DOI: 10.1155/2013/531491

Full-Text   Cite this paper   Add to My Lib

Abstract:

Highly pathogenic avian influenza (HPAI) is a major global zoonosis. It has a complex ecological distribution with almost unpredictable epidemiological features thus placing it topmost in the World Organization for Animal Health list A poultry diseases. Structured questionnaire survey of poultry farmer’s knowledge, attitudes, and practices (KAP) in two Nigerian states revealed the presence of risk farming practices that may enable avian influenza high chance of introduction/reintroduction. There existed significant statistical association between farmer’s educational levels and AI awareness and zoonotic awareness ( ). Poultry rearing of multiage and species (81%), multiple sources of stock (62%), inadequate dead-bird disposal (71%), and access to live bird markets (LBMs) (62%) constituted major biosecurity threats in these poultry farming communities. Haemagglutination inhibition (HI) test detected antibodies against H5 avian influenza (AI) in 8 of the 400 sera samples; rapid antigen detection test kit (RADTK) was negative for all the 400 cloaca and trachea swabs. These results and other poultry diseases similar to AI observed in this study could invariably affect avian influenza early detection, reporting, and control. We recommend strong policy initiatives towards poultry farmers’ attitudinal change and increasing efforts on awareness of the implications of future HPAI outbreaks in Nigeria. 1. Introduction Avian influenza is a highly contagious disease of primarily birds. It is worldwide known to cause devastating effects in poultry to which different strategies ranging from vaccination to stamping out, were employed to control outbreaks in recent past [1–6]. In recent times AI appears to receive most scientific investigations seeking for ways and means of AI virus containment. Notwithstanding, AI has been reemerging with increasing public health impact. In this world without borders to disease spread, no region is protected against a pandemic, and no nation remains safe when all others are at risk of AI incursion [7, 8]. The world is now a global village in terms of international animal trade and movement hence the future wave of pandemic influenza may be difficult to predict. Global population growth with increasing levels of poverty and food insecurity seems to initiate changing approaches in agro-livestock practices. The poultry subsector has long been recognised for its potential to significantly contribute to food security and poverty alleviation. As such, it has become so dynamic and highly intensified over the last few decades [8]. This

References

[1]  M. Brudh and D. C. Johnson, “Epidemiology of avian influenza in domestic poultry,” in Proceedings of the 2nd International Symposium on Avian Influenza, pp. 177–185, 1986.
[2]  C. W. Beard, “Influenza and Newcastle remain a challenge,” in World Poultry, pp. 9–10, 19981998.
[3]  NADIS INFO, “Avian influenza,” in National Animal Disease Information and Surveillance Bulletin, No. 2, p. 1, Pan African Programme for the Control Of Epizootics (PACE), Federal Department of Livestock and Pest Control Services, 2008.
[4]  Office International des Epizootics (OIE), “Avian influenza,” in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Adopted Version, chapter 2.7.12, pp. 1–25, 2005.
[5]  D. J. Alexander, “An overview of the epidemiology of avian influenza,” Vaccine, vol. 25, no. 30, pp. 5637–5644, 2007.
[6]  S. Belák, I. Kiss, and G. J. Viljoen, “New developments in the diagnosis of avian influenza,” OIE Revue Scientifique et Technique, vol. 28, no. 1, pp. 233–243, 2009.
[7]  C. Cardona, “Low pathogenicity avian influenza outbreaks in commercial poultry in California,” in The Threat of Pandemic Influenza: Are We Ready? S. L. Knober, A. Mack, A. Mahmood, and S. M. Lemon, Eds., pp. 243–253, National Academic Press, Wishington, DC, USA, 2005.
[8]  A. T. Toure, “Avian influenza,” in Proceedings of the 4th International Conference on Avian Influenza, pp. 8–10, Bulletin of Animal Health and Production in Africa, Bamako, Mali, 2007.
[9]  M. Artois, D. Bicout, D. Doctrinal et al., “Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds,” OIE Revue Scientifique et Technique, vol. 28, no. 1, pp. 69–92, 2009.
[10]  H. Chen, H. Li, Z. Li et al., “Swine influenza in China,” Developmental Biology, pp. 124–173, 2006.
[11]  T. van den Berg, “The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza,” OIE Revue Scientifique et Technique, vol. 28, no. 1, pp. 93–111, 2009.
[12]  D. Kobasa, K. Wells, and Y. Kawaoka, “Amino acids responsible for the absolute sialidase activity of the influenza a virus neuraminidase: relationship to growth in the duck intestine,” Journal of Virology, vol. 75, no. 23, pp. 11773–11780, 2001.
[13]  J. A. Stegeman and A. Bouma, “Epidemiology and control of avian influenza,” in Proceedings of the 11th International Conference of the Association of Institute for Tropical Veterinary Medicine and 16th Veterinary Association Malaysia Congress, pp. 141–143, Sunway Pyramid Convention Centre, Petaling Java, Malaysia, August 2004.
[14]  W. Utterback, “Update on avian influenza through February 21, in Pensylvania and Virginia,” in Proceedings of the 33rd Western Poultry Disease Conference, pp. 4–7, 1984.
[15]  D. Areechokchai, C. Jiraphongsa, Y. Laosiritaworn, W. Hanshaoworakul, and M. O'Reilly, “Investigation of avian influenza (H5N1) outbreak in humans—Thailand, 2004,” Morbidity and Mortality Weekly Report, vol. 55, supplement 1, pp. 3–6, 2006.
[16]  B. C. Easterday, U. S. Hinshaw, and D. A. Halvorson, “Influenza,” in Diseases of Poultry, B. N. Calnek, B. J. Barnes, C. N. Beard, L. R. McDougall, and Y. M. Saif, Eds., pp. 400–421, Iowa State University Press, Ames, Iowa, USA, 10th edition, 1997.
[17]  M. Liu, Y. Guan, M. Peiris et al., “The quest of influenza a viruses for new hosts,” Avian Diseases, vol. 47, pp. 849–856, 2003.
[18]  E. Thiry, A. Zicola, D. Addie et al., “Highly pathogenic avian influenza H5N1 virus in cats and other carnivores,” Veterinary Microbiology, vol. 122, no. 1-2, pp. 25–31, 2007.
[19]  W. Hanson, “Avian influenza,” in Field Manual of Wild Life Diseases: Birds, pp. 181–184, 2005.
[20]  F. T. Jordan and M. Pattison, “Avian influenza,” in Poultry Diseases, pp. 156–165, Saunders, Cambridge, UK, 4th edition, 1999.
[21]  J. M. Katz, “Preparing for the next influenza pandemic,” ASM News, vol. 70, no. 9, pp. 412–418, 2004.
[22]  Bauchi State Agricultural Development Programme Bulletin (BSADP), pp. 5–8, 2003.
[23]  “National Animal Disease Investigation and Surveillance (NADIS, 2006),” Avian Influenza Bulletin No. 2, 2006.
[24]  T. Tesfai, Training the Trainer (TOT) Workshop of Live Bird Marketers and Poultry Processors Opening Remarks, 2008.
[25]  A. Fusaro, T. Joannis, I. Monne et al., “Introduction into Nigeria of a distinct genotype of avian influenza virus (H5N1),” Emerging Infectious Diseases, vol. 15, no. 3, pp. 445–447, 2009.
[26]  National Animal Disease Information System (NADIS), “Highly pathogenic avian influenza,” in Avian Influenza Standard Operating Procedure Manual, p. 41, 2009.
[27]  T. Mabbet, “H5N1 hits Africa head on-but all eyes are looking elsewhere,” Poultry International, pp. 46–51, 2006.
[28]  R. S. Morris and R. Jackson, “Historical background on avian influenza and emergence of the H5N1 strain,” Epidemiology of H5N1 avian influenza in Asia and implications for regional control, A Contracted Report for the Food and Agricultural Organisation of the United Nations, pp. 2–4, 2005.
[29]  A. W. Mounts, H. Kwong, H. S. Izurieta et al., “Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997,” Journal of Infectious Diseases, vol. 180, no. 2, pp. 505–508, 1999.
[30]  G. F. Rimmelzwaan, D. van Riel, M. Baars et al., “Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts,” The American Journal of Pathology, vol. 168, no. 1, pp. 176–183, 2006.
[31]  Food and Agricultural Organisation (F.A.O.), “Preparing for highly pathogenic avian influenza,” in Animal Production and Health Manual, no. 3, pp. 1–54, 2006.
[32]  A. Nishiguchi, T. Yamamoto, T. Tsutsui et al., “Control of an outbreak of highly pathogenic avian influenza, caused by the virus sub-type H5N1, in Japan in 2004,” OIE Revue Scientifique et Technique, vol. 24, no. 3, pp. 933–944, 2005.
[33]  W. B. Becker, “The isolation and classification of Tern virus: influenza A-Tern South Africa—1961,” Journal of Hygiene, vol. 64, no. 3, pp. 309–320, 1966.
[34]  N. Promkuntod, C. Antarasena, and P. Prommuang, “Isolation of avian influenza virus A subtype H5N1 from internal contents (albumen and allantoic fluid) of Japanese quail (Coturnix coturnix japonica) eggs and oviduct during a natural outbreak,” Annals of the New York Academy of Sciences, vol. 1081, pp. 171–173, 2006.
[35]  M. Terry, “H5N1 hits Africa head on-but all eyes are looking elsewhere,” Poultry International, no. 1, pp. 5–9, 2006.
[36]  X. Xu, K. Subbarao, N. J. Cox, and Y. Guo, “Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong,” Virology, vol. 261, no. 1, pp. 15–19, 1999.
[37]  S. Shane, “Avian influenza,” in The Poultry Disease Handbook, pp. 13–15, American Soybean Association, 1999.
[38]  E. L. Stubbs, “Fowl plague,” in Diseases of Poultry, H. E. Biester and L. H. Schwarte, Eds., pp. 813–822, Iowa State University Press, Ames, Iowa, USA, 5th edition, 1965.
[39]  C. E. Whiteman and A. A. Bickford, “Avian influenza,” in Avian Disease Manual, pp. 1–2, The American Association of Avian Pathologist, Kennett Square, Pa, USA, 3rd edition, 1989.
[40]  K. G. Nicholson, J. M. Wood, and M. Zambon, “Influenza,” The Lancet, vol. 362, no. 9397, pp. 1733–1745, 2003.
[41]  R. G. Webster and D. J. Hulse, “Microbial adaptation and change: avian influenza,” OIE Revue Scientifique et Technique, vol. 23, no. 2, pp. 453–465, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133