全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel De Novo EFNB1 Gene Mutation in a Mexican Patient with Craniofrontonasal Syndrome

DOI: 10.1155/2013/349725

Full-Text   Cite this paper   Add to My Lib

Abstract:

Craniofrontonasal syndrome (CNFS) is an X-linked disorder caused by mutations in the EFNB1 gene in which, paradoxically, heterozygous females are more severely affected than hemizygous males. In this paper, the clinical and molecular studies of a female subject with CFNS are described. A novel de novo c.473T>C (p.M158T) mutation in exon 3 of EFNB1 was demonstrated in this patient. The M158 residue of the Ephrin-B1 protein is highly conserved between species. Our results expand the mutational spectrum exposed by CNFS. 1. Introduction Craniofrontonasal syndrome (CFNS; OMIM # 304110) [1] is an X-linked syndrome involving developmental malformation with variable clinical expression characterized by severe hypertelorism, depressed nasal bridge and bifid nasal tip, frontal bossing, coronal suture synostosis, corpus callosum agenesis, and occasionally cleft lip or palate [2–4]. This disorder is caused by mutations in the EFNB1 gene, located at Xq13.1, and encoding a ligand of the Ephrin family of receptor protein tyrosine kinases [3]. The most common types of EFNB1 mutations (up to 55%) in CFNS patients are frameshift, nonsense, and splice site mutations that lead to premature termination codons (PTCs). Missense mutations constitute approximately 42% of all EFNB1 mutations, and most of them occur in exons 2 and 3, leading to the substitutions of amino acid residues involved in receptor-ligand interaction and cell signaling, which are critical for cell sorting, migration and adhesion, midline fusion, axon guidance, neural plasticity, and synaptogenesis [5–8]. Here, we describe a sporadic case of CFNS due to a novel EFNB1 mutation occurring in a female Mexican patient. 2. Case Presentation A 3-month-old girl was referred to the Genetics Department after a frontoorbital advancement surgery due to right unicoronal synostosis and facial dysmorphism. She is the only child of healthy, nonconsanguineous parents. There was no prenatal exposure to teratogenic agents. A structural ultrasound at 24 weeks revealed a nonspecific cranial malformation. The patient was delivered by caesarean section at 38 weeks of pregnancy and had a birth weight of 2,700?g, birth length of 48.5?cm, and an Apgar score of . Birth examination disclosed plagiocephaly (left frontal bossing and right coronal synostosis), hypertelorism, downslanting palpebral fissures, facial asymmetry, a broad and flattened nasal bridge, a bifid nasal tip, and broad thumbs and halluces with longitudinally split nails (Figure 1). No abnormalities were found in the transfontanellar ultrasound and echocardiogram

References

[1]  M. D. OMIM (TM) Bethesda, “McKusick-Nathans Institute for Genetic Medicine, John Hopkins University, National Center for Biotechnology Information, National Library of Medicine,” Online Mendelian Inheritance in Man, 2008.
[2]  I. Wieland, S. Jakubiczka, P. Muschke et al., “Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome,” American Journal of Human Genetics, vol. 74, no. 6, pp. 1209–1215, 2004.
[3]  P. Wieacker and I. Wieland, “Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox,” Molecular Genetics and Metabolism, vol. 86, no. 1-2, pp. 110–116, 2005.
[4]  D. Saavedra, A. Richieri-Costa, M. L. Guion-Almeida, et al., “Craniofrontonasal syndrome: study of 41 patients,” American Journal of Medical Genetics A, vol. 61, no. 2, pp. 147–151, 1996.
[5]  S. R. F. Twigg, K. Matsumoto, A. M. J. Kidd et al., “The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males,” American Journal of Human Genetics, vol. 78, no. 6, pp. 999–1010, 2006.
[6]  S. R. F. Twigg, R. Kan, C. Babbs et al., “Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8652–8657, 2004.
[7]  R. Makarov, B. Steiner, Z. Gucev, V. Tasic, P. Wieacker, and I. Wieland, “The impact of CFNS-causing EFNB1 mutations on ephrin-B1 function,” BMC Medical Genetics, vol. 11, no. 1, article 98, 2010.
[8]  I. Wieland, R. Makarov, W. Reardon et al., “Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic,” European Journal of Human Genetics, vol. 16, no. 2, pp. 184–191, 2008.
[9]  D. Wallis, F. Lacbawan, M. Jain et al., “Additional EFNB1 mutations in craniofrontonasal syndrome,” American Journal of Medical Genetics A, vol. 146, no. 15, pp. 2008–2012, 2008.
[10]  I. Wieland, W. Reardon, S. Jakubiczka et al., “Twenty-six novel EFNB1 mutations in familial and sporadic craniofrontonasal syndrome (CFNS),” Human Mutation, vol. 26, no. 2, pp. 113–118, 2005.
[11]  D. I. Zafeiriou, E. L. Pavlidou, and E. Vargìami, “Diverse clinical and genetic aspects of craniofrontonasal syndrome,” Pediatric Neurology, vol. 44, no. 2, pp. 83–87, 2011.
[12]  R. Klein, “Eph/ephrin signaling in morphogenesis, neural development and plasticity,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 580–589, 2004.
[13]  http://genetics.bwh.harvard.edu/pph2/.
[14]  http://evs.gs.washington.edu/EVS/.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413