全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Successful Use of Inhaled Nitric Oxide in the Management of Severe Hepatopulmonary Syndrome after Orthotopic Liver Transplantation

DOI: 10.1155/2014/415109

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatopulmonary syndrome (HPS) is characterized by pulmonary vasodilation and subsequent hypoxemia in the setting of hepatic dysfunction. There is currently no pharmacologic intervention that has been shown to significantly affect outcomes and liver transplantation remains the mainstay of therapy. Unfortunately, patients undergoing liver transplantation are at high risk of significant hypoxemia and mortality in the early postoperative period. In the following case series, we present two cases of patients with severe HPS who underwent liver transplantation and experienced marked hypoxemia in the early postoperative period. In both cases, we successfully treated the patients with inhaled nitric oxide for their severe refractory life-threatening hypoxemia which led to immediate and dramatic improvements in their oxygenation. Although the use of inhaled nitric oxide in patients with HPS has been sporadically reported in pediatric literature and in animal studies, to our knowledge, our cases are the first recorded in adult patients. 1. Introduction Hepatopulmonary syndrome (HPS) represents one of the major causes of hypoxia and dyspnea among patients with end-stage liver disease. It is characterized by the triad of hypoxemia with an abnormal alveolar-arterial (A-a) gradient, presence of intrapulmonary shunting, and chronic liver disease [1]. The frequency of this disorder among patients with cirrhosis varies from 4% to 47% and may be overall underdiagnosed due to other comorbidities and pulmonary complications of liver disease that mask its presence [1]. HPS significantly influences both functional status and survival among this population of patients [1, 2]. Multiple medications have been tested for HPS with no significant improvement in oxygenation, and supportive therapy with supplemental oxygen and liver transplantation remain the only two therapies with proven benefit [3]. Unfortunately, liver transplantation itself carries a high risk of morbidity and mortality in the perioperative and postoperative period. Patients with HPS often suffer from persistent hypoxemia and are at increased risk for prolonged mechanical ventilation with a longer ICU length of stay compared to other liver transplant recipients [4, 5]. In the following case series, we present two cases of patients with severe HPS who underwent liver transplantation and experienced marked hypoxemia in the early postoperative period. In both cases, we were successful in bridging these patients with severe refractory life-threatening hypoxemia with inhaled nitric oxide which led to immediate and

References

[1]  M. B. Fallon, M. J. Krowka, R. S. Brown et al., “Impact of hepatopulmonary syndrome on quality of life and survival in liver transplant candidates,” Gastroenterology, vol. 135, no. 4, pp. 1168–1175, 2008.
[2]  K. L. Swanson, R. H. Wiesner, and M. J. Krowka, “Natural history of hepatopulmonary syndrome: impact of liver transplantation,” Hepatology, vol. 41, no. 5, pp. 1122–1129, 2005.
[3]  V. Ho, “Current concepts in the management of hepatopulmonary syndrome,” Vascular Health and Risk Management, vol. 4, no. 5, pp. 1035–1041, 2008.
[4]  M. J. Krowka, R. H. Wiesner, and J. K. Heimbach, “Pulmonary contraindications, indications and MELD exceptions for liver transplantation: a contemporary view and look forward,” Journal of Hepatology, vol. 59, no. 2, pp. 367–374, 2013.
[5]  E. Schiffer, P. Majno, G. Mentha et al., “Hepatopulmonary syndrome increases the postoperative mortality rate following liver transplantation: a prospective study in 90 patients,” American Journal of Transplantation, vol. 6, no. 6, pp. 1430–1437, 2006.
[6]  P. Durand, C. Baujard, A. L. Grosse et al., “Reversal of hypoxemia by inhaled nitric oxide in children with severe hepatopulmonary syndrome, type 1, during and after liver transplantation,” Transplantation, vol. 65, no. 3, pp. 437–439, 1998.
[7]  N. Taniai, M. Onda, T. Tajiri et al., “Reversal of hypoxemia by inhaled nitric oxide in a child with hepatopulmonary syndrome after living-related liver transplantation,” Transplantation Proceedings, vol. 34, no. 7, pp. 2791–2792, 2002.
[8]  M. B. Fallon, D. C. Mulligan, R. G. Gish, and M. J. Krowka, “Model for End-Stage Liver Disease (MELD) exception for hepatopulmonary syndrome,” Liver Transplantation, vol. 12, no. 12, pp. S105–S107, 2006.
[9]  J. Hobeika, D. Houssin, O. Bernard, D. Devictor, G. Grimon, and Y. Chapuis, “Orthotopic liver transplantation in children with chronic liver disease and severe hypoxemia,” Transplantation, vol. 57, no. 2, pp. 224–228, 1994.
[10]  H. Itasaka, J. J. Hershon, K. L. Cox et al., “Transient deterioration of intrapulmonary shunting after pediatric liver transplantation,” Transplantation, vol. 55, no. 1, pp. 212–214, 1993.
[11]  M. R. Arguedas, G. A. Abrams, M. J. Krowka, and M. B. Fallon, “Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation,” Hepatology, vol. 37, no. 1, pp. 192–197, 2003.
[12]  B. K. De, D. Dutta, S. K. Pal, S. Gangopadhyay, S. D. Baksi, and A. Pani, “The role of garlic in hepatopulmonary syndrome: a randomized controlled trial,” Canadian Journal of Gastroenterology, vol. 24, no. 3, pp. 183–188, 2010.
[13]  L. B. Gupta, A. Kumar, A. K. Jaiswal et al., “Pentoxifylline therapy for hepatopulmonary syndrome: a pilot study,” Archives of Internal Medicine, vol. 168, no. 16, pp. 1820–1823, 2008.
[14]  M. B. Fallon, G. A. Abrams, B. Luo, Z. Hou, J. Dai, and D. D. Ku, “The role of endothelial nitric oxide synthase in the pathogenesis of a rat model of hepatopulmonary syndrome,” Gastroenterology, vol. 113, no. 2, pp. 606–614, 1997.
[15]  G. Rolla, L. Brussino, P. Colagrande et al., “Exhaled nitric oxide and oxygenation abnormalities in hepatic cirrhosis,” Hepatology, vol. 26, no. 4, pp. 842–847, 1997.
[16]  L. Brussino, C. Bucca, M. Morello, E. Scappaticci, M. Mauro, and G. Rolla, “Effect on dyspnoea and hypoxaemia of inhaled NG-nitro-L-arginine methyl ester in hepatopulmonary syndrome,” The Lancet, vol. 362, no. 9377, pp. 43–44, 2003.
[17]  J. Varghese, H. Ilias-Basha, R. Dhanasekaran, S. Singh, and J. Venkataraman, “Hepatopulmonary syndrome—past to present,” Annals of Hepatology, vol. 6, no. 3, pp. 135–142, 2007.
[18]  T. J. Diao, X. Chen, L. H. Deng, et al., “Protective effect of nitric oxide on hepatopulmonary syndrome from ischemia-reperfusion injury,” World Journal of Gastroenterology, vol. 18, no. 25, pp. 3310–3316, 2012.
[19]  O. Schiller, Y. Avitzur, G. Kadmon et al., “Nitric oxide for post-liver-transplantation hypoxemia in pediatric hepatopulmonary syndrome: case report and review,” Pediatric Transplantation, vol. 15, no. 7, pp. E130–E134, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413