全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Secondary Acute Myeloid Leukemia in a One-Year-Old Girl Diagnosed with JAK2-V617F Mutation Positive Myeloproliferative Neoplasm

DOI: 10.1155/2014/473297

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myeloproliferative neoplasms (MPNs) are a group of clonal disorders characterized by hyperproliferation of hematologic cell lines and have been associated with tyrosine kinase JAK2-V617F mutations. Secondary acute myeloid leukemia (sAML) is a known complication of JAK2-V617F+ MPNs and bears a poor prognosis. Although the evolution of a JAK2-V617F+ MPN to a mixed-lineage leukemia has been reported in the pediatric population, no evolutions into sAML have been described. We present a case of a one-year-old girl diagnosed with JAK2-V617F+ MPN with evolution into sAML. Despite initial morphologic remission, she eventually relapsed and succumbed to her disease. 1. Introduction Myeloproliferative neoplasms (MPNs) are a heterogeneous group of disorders manifested by increased hematopoiesis and proliferation of one or more of the hematologic cell lines. A mutation in the tyrosine kinase JAK 2 (JAK2-V617F) is frequently encountered in patients with MPNs [1]. Adults with JAK2-V617F+ MPNs can evolve into acute myeloid leukemia (AML). Evolution into AML from a known MPN is included in the category of secondary AML (sAML). Conversely, the JAK2-V617F mutation is more common in sAML than de novo AML [2–6]. Secondary AMLs evolving from JAK2-V617F+ MPNs bear a poor prognosis since first complete remission (CR) is difficult to obtain; even matched sibling donor hematopoietic stem cell transplant (HSCT) recipients have poor outcomes [4, 7–9]. JAK2-V617F mutations have been described in pediatric patients with MPNs, but the evolution into sAML has not [10]. We describe a case of a one-year-old girl with a JAK2-V617F+ MPN that evolved into sAML. 2. Case Report An 1-year old female presented with a two-month history of fever, fussiness, and refusal to bear weight. Significant physical findings included a one centimeter, freely mobile, nodular mass under her right eyebrow, diffuse lymphadenopathy, and absence of organomegaly. Initial hematologic evaluation revealed a white blood cell count (WBC) of /L, hemoglobin of 9.6?g/dL, and a platelet count of /L. The WBC differential demonstrated a left shift with 2% peripheral blasts. Bone marrow evaluation on hospital day (HD) three was morphologically concerning for myelodysplastic syndrome revealing hypercellularity (Figure 1(a)) with blasts constituting 4% of marrow cells (Figure 1(b)). Cytogenetics revealed 46,XX,dup(8)(q21.3q23), add (11)(p13),del (13)(q12q14),add (18)(p11.2) /46,sl,add(X)(q26),add(3)(p25),add(9)(q32),-del (13), inv (15)(q15sq26.1),+18,-add (18),+mar .ish add (11)(MLL+), which, although complex, identified no

References

[1]  E. J. Baxter, L. M. Scott, and P. J. Campbell, “Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders,” The Lancet, vol. 366, no. 9480, p. 122, 2005.
[2]  K. Shibata, Y. Shimamoto, K. Suga, M. Sano, M. Matsuzaki, and M. Yamaguchi, “Essential thrombocythemia terminating in acute leukemia with minimal myeloid differentiation—a brief review of recent literature,” Acta Haematologica, vol. 91, no. 2, pp. 84–88, 1994.
[3]  Y. Sterkers, C. Preudhomme, J.-L. La? et al., “Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion,” Blood, vol. 91, no. 2, pp. 616–622, 1998.
[4]  J. Jelinek, Y. Oki, V. Gharibyan et al., “JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia,” Blood, vol. 106, no. 10, pp. 3370–3373, 2005.
[5]  R. L. Levine, M. Loriaux, B. J. P. Huntly et al., “The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia,” Blood, vol. 106, no. 10, pp. 3377–3379, 2005.
[6]  C. Vicente, I. Vázquez, N. Marcotegui et al., “JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers,” Leukemia, vol. 21, no. 11, pp. 2386–2390, 2007.
[7]  P. J. Campbell, E. J. Baxter, P. A. Beer et al., “Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation,” Blood, vol. 108, no. 10, pp. 3548–3555, 2006.
[8]  R. Arnold, T. De Witte, A. Van Biezen et al., “Unrelated bone marrow transplantation in patients with myelodysplastic syndromes and secondary acute myeloid leukemia: an EBMT survey,” Bone Marrow Transplantation, vol. 21, no. 12, pp. 1213–1216, 1998.
[9]  C. S. Tam, R. M. Nussenzveig, U. Popat et al., “The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms,” Blood, vol. 112, no. 5, pp. 1628–1637, 2008.
[10]  O. Ismael, A. Shimada, A. Hama, et al., “De novo childhood myelodysplastic/myeloproliferative disease with unique molecular characteristics,” British Journal of Haematology, vol. 158, no. 1, pp. 129–137, 2012.
[11]  C. M. Machado, L. S. Vilas Boas, A. V. A. Mendes et al., “Low mortality rates related to respiratory virus infections after bone marrow transplantation,” Bone Marrow Transplantation, vol. 31, no. 8, pp. 695–700, 2003.
[12]  C. E. Taylor, H. K. Osman, A. J. Turner et al., “Parainfluenza virus and respiratory syncytial virus infection in infants undergoing bone marrow transplantation for severe combined immunodeficiency,” Communicable Disease and Public Health, vol. 1, no. 3, pp. 202–203, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133