全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optical Coherence Tomography Imaging of Choroidal Abnormalities in Neurofibromatosis Type 1

DOI: 10.1155/2013/292981

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a case of neurofibromatosis type 1 (NF1) examined by infrared fundus autofluorescence (IR-FAF) and optical coherence tomography (OCT) to characterize the associated choroidal abnormalities. The conventional ophthalmoscopic findings were unremarkable. However, IR-FAF revealed multiple bright patchy lesions in the choroid of the posterior pole, in both eyes. OCT demonstrated irregular hyperreflectivity at the sites of these lesions. Patients with NF1 may have typical choroidal lesions that are visible on IR-FAF, which can be confirmed through OCT. 1. Introduction Neurofibromatosis type 1 (NF1), an autosomal dominant disorder with a high mutation rate, is considered a neurocristopathy characterized by pathological hamartomatous proliferations of neural crest-derived tissues. A minimum of 2 of the following criteria are required for diagnosis: 6 or more café-au-lait spots, 2 or more cutaneous neurofibromas, 1 or more plexiform neurofibromas, axillary or groinal freckling, optic glioma, 2 or more iris Lisch nodules, distinctive bony lesions, and a first-degree relative with NF1 [1]. Among these criteria, iris Lisch nodules are frequently observed and well recognized. However, retinal and choroidal lesions have been considered unusual in eyes with this disease. In 2000, Yasunari et al. [2] suggested that choroidal abnormalities were easily detectable by infrared light examination with a scanning laser ophthalmoscope in 100% of their NF1 patients. Recently, the cutoff value for choroidal nodules detected by infrared fundus autofluorescence (IR-FAF) was reported to be 1.5 [3]. The choroid is one of the most commonly affected structures by NF1, and IR-FAF is typically used to detect choroidal nodules in NF1 patients [4–8]. To our knowledge, there are few reports in the literature describing the use of optical coherence tomography (OCT) to identify choroidal abnormalities in NF1 patients [3, 7, 8]. Herein, we report on the IR-FAF and OCT findings for a patient with NF1. 2. Case Report A 25-year-old man with NF1 was referred to our clinic for an ophthalmological examination. The NF1 diagnosis was made on the basis of several café-au-lait spots and cutaneous neurofibromas. The patient’s family and personal medical history added no significant information. He had no visual symptoms. His best-corrected visual acuity was 1.2 in both eyes. There were at least 3 Lisch nodules on each side. Ophthalmoscopic examinations of the fundi did not show any abnormalities (Figures 1(a) and 1(b)). However, IR-FAF (Heidelberg Retina Angiograph 2, Heidelberg Engineering,

References

[1]  D. H. Gutmann, A. Aylsworth, J. C. Carey et al., “The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2,” Journal of the American Medical Association, vol. 278, no. 1, pp. 51–57, 1997.
[2]  T. Yasunari, K. Shiraki, H. Hattori, and T. Miki, “Frequency of choroidal abnormalities in neurofibromatosis type 1,” The Lancet, vol. 356, no. 9234, pp. 988–992, 2000.
[3]  F. Viola, E. Villani, F. Natacci et al., “Choroidal abnormalities detected by near-infrared reflectance imaging as a new diagnostic criterion for neurofibromatosis 1,” Ophthalmology, vol. 119, no. 2, pp. 369–375, 2012.
[4]  F. Mori, N. Kitaya, T. Hikichi, and A. Yoshida, “Choroidal abnormalities in neurofibromatosis type 1 with non-invasive infrared imaging,” British Journal of Ophthalmology, vol. 86, no. 4, pp. 482–483, 2002.
[5]  S. Nakakura, K. Shiraki, T. Yasunari, Y. Hayashi, S. Ataka, and T. Kohno, “Quantification and anatomic distribution of choroidal abnormalities in patients with type I neurofibromatosis,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 243, no. 10, pp. 980–984, 2005.
[6]  S. Ishiko, A. Yoshida, Y. Kato, and H. Kagokawa, “Occult retinal and choroidal lesions in neurofibromatosis type 1,” British Journal of Ophthalmology, vol. 90, no. 8, pp. 1067–1068, 2006.
[7]  A. Ayata, M. Unal, D. Ersanli, and S. Tatlipinar, “Near infrared fluorescence and OCT features of choroidal abnormalities in type 1 neurofibromatosis,” Clinical and Experimental Ophthalmology, vol. 36, no. 4, pp. 390–392, 2008.
[8]  T. Ueda-Consolvo, A. Miyakoshi, H. Ozaki, S. Houki, and A. Hayashi, “Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1,” Clinical Ophthalmolology, vol. 6, pp. 1191–1194, 2012.
[9]  C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Investigative Ophthalmology and Visual Science, vol. 47, no. 8, pp. 3556–3564, 2006.
[10]  M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” Journal of Investigative Dermatology, vol. 104, no. 6, pp. 946–952, 1995.
[11]  A. Kurosawa and H. Kurosawa, “Ovoid bodies in choroidal neurofibromatosis,” Archives of Ophthalmology, vol. 100, no. 12, pp. 1939–1941, 1982.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413