全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

DOI: 10.1155/2013/146347

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy. 1. Introduction Cerebral palsy is a group of severe disorders in the development of movement and posture occurred in developing fetal or infant brain, often accompanied with disturbances of sensation, cognition, communication, perception, and/or behavior and/or by a seizure [1]. The causes of cerebral palsy are heterogeneous with no single etiology predominating, and the main etiological factors are periventricular leukomalacia, intrapartum asphyxia, cerebral dysgenesis, and intracranial hemorrhage [2]. The prevalence in children aged 3–10 years is 2–4 per 1000 [3]. The essential feature of children with cerebral palsy is an early-onset neuromotor impairment resulting from a nonprogressive pathology in immature brain [4]. Roughly half of children with cerebral palsy also have symptoms of nonneuromotor impairments, such as cognitive disabilities, epilepsy, speech and language difficulties, primary sensory impairment, and behavioral challenges [5]. Conventional therapies for cerebral palsy include physical and occupational therapy, oral medications, and orthopedic surgery for supportive and rehabilitative approaches [6]. Stem cell therapy is considered as a novel approach in the treatment of cerebral palsy via replacing injured or dead neuronal cells and has proven effective in restoring injured organs and tissues in animal models [7]. Mesenchymal stem cells (MSCs) were first identified in 1976 in the stromal compartment of bone marrow [8] and are currently referred to also as mesenchymal stromal cells [9]. Previously, a few case reports showed the positive clinical benefits of mesenchymal stromal cells in the treatment of neurological diseases including spinal cord injury and basilar artery dissection [10–12]. Recently, a case report that intrathecal infusion of autologous bone marrow mononuclear cells in a cerebral palsy

References

[1]  M. Bax, M. Goldstein, P. Rosenbaun et al., “Proposed definition and classification of cerebral palsy,” Developmental Medicine and Child Neurology, vol. 47, no. 8, pp. 571–576, 2005.
[2]  M. I. Shevell, A. Majnemer, and I. Morin, “Etiologic yield of cerebral palsy: a contemporary case series,” Pediatric Neurology, vol. 28, no. 5, pp. 352–359, 2003.
[3]  L. A. Koman, B. P. Smith, and J. S. Shilt, “Cerebral palsy,” The Lancet, vol. 363, no. 9421, pp. 1619–1631, 2004.
[4]  P. Rosenbaum, N. Paneth, A. Leviton et al., “A report: the definition and classification of cerebral palsy April 2006,” Devlopmental Medicine Child and Neurology, vol. 109, pp. 8–14, 2007.
[5]  M. I. Shevell, “Current understandings and challenges in the management of cerebral palsy,” Minerva Pediatrica, vol. 61, no. 4, pp. 399–413, 2009.
[6]  M. Shevell, S. P. Miller, S. W. Scherer, J. Y. Yager, and M. G. Fehlings, “The Cerebral Palsy Demonstration Project: a multidimensional research approach to cerebral palsy,” Seminars in Pediatric Neurology, vol. 18, no. 1, pp. 31–39, 2011.
[7]  L. Titomanlio, A. Kavelaars, J. Dalous, et al., “Stem cell therapy for neonatal brain injury: perspectives and challenges,” Annals of Neurology, vol. 70, no. 5, pp. 698–712, 2011.
[8]  A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976.
[9]  E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005.
[10]  K. S. Kang, S. W. Kim, Y. H. Oh et al., “A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study,” Cytotherapy, vol. 7, no. 4, pp. 368–373, 2005.
[11]  T. E. Ichim, F. Solano, F. Lara et al., “Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report,” International Archives of Medicine, vol. 3, no. 1, article 30, 2010.
[12]  H. Han, S. K. Chang, J. J. Chang, S. H. Hwang, S. H. Han, and B. H. Chun, “Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report,” Journal of Medical Case Reports, vol. 5, article 562, 2011.
[13]  C. Purandare, D. G. Shitole, V. Belle, A. Kedari, N. Bora, and M. Joshi, “Therapeutic potential of autologous stem cell transplantation for cerebral palsy,” Case Reports in Transplantation, vol. 2012, Article ID 825289, 6 pages, 2012.
[14]  L. L. Lu, Y. J. Liu, S. G. Yang et al., “Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials,” Haematologica, vol. 91, no. 8, pp. 1017–1026, 2006.
[15]  T. Mehta, A. Feroz, U. Thakkar, A. Vanikar, V. Shah, and H. Trivedi, “Subarachnoid placement of stem cells in neurological disorders,” Transplantation Proceedings, vol. 40, no. 4, pp. 1145–1147, 2008.
[16]  K. I. Park, Y. D. Teng, and E. Y. Snyder, “The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue,” Nature Biotechnology, vol. 20, no. 11, pp. 1111–1117, 2002.
[17]  E. Y. Snyder, C. Yoon, J. D. Flax, and J. D. Macklis, “Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11663–11668, 1997.
[18]  M. Goldstein, “The treatment of cerebral palsy: what we know, what we don't know,” Journal of Pediatrics, vol. 145, supplement 2, pp. S42–S46, 2004.
[19]  Y. C. Lin, T. L. Ko, Y. H. Shih et al., “Human umbilical mesenchymal stem cells promote recovery after ischemic stroke,” Stroke, vol. 42, no. 7, pp. 2045–2053, 2011.
[20]  M. J. Zhang, J. J. Sun, L. Qian et al., “Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice,” Brain Research, vol. 1402, pp. 122–131, 2011.
[21]  K. S. Bae, J. B. Park, H. S. Kim, D. S. Kim, D. J. Park, and S. J. Kang, “Neuron-like differentiation of bone marrow-derived mesenchymal stem cells,” Yonsei Medical Journal, vol. 52, no. 3, pp. 401–412, 2011.
[22]  R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009.
[23]  H. Wang, M. Wu, and Y. Liu, “Are mesenchymal stem cells major sources of safe signals in immune system?” Cell Immunology, vol. 272, no. 2, pp. 112–116, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133