全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Agronomy  2014 

Effect of Soil Moisture Deficit Stress on Biomass Accumulation of Four Coffee (Coffea arabica) Varieties in Zimbabwe

DOI: 10.1155/2014/767312

Full-Text   Cite this paper   Add to My Lib

Abstract:

A study was conducted to evaluate four common coffee (Coffea arabica) varieties in Zimbabwe for drought tolerance and ability to recover. The plants were subjected to drought stress for 21 and 28 days with evaluation of recovery done 14 days after interruptive irrigation. Coffee varieties were not significantly different in initial fresh and dry biomass before stressing ( ). CR95 had significantly accumulated more ( )dry root mass (0.8?g) than the rest of the varieties after 21 days of drought stress. SL28 and CR95 had an 8.3% increase in dry biomass while Cat128 did not gain any dry biomass after 21 days of drought stress. CR95 had significantly more ( ) total dry biomass after 21 days and 28 days of drought stress while SL28 was consistently the least in both periods. Cat129 had the highest recovery gains in dry root, dry shoot, and total dry biomass after 21 days and 28 days of drought stress. Initial root biomass was negatively correlated with changes in total fresh and dry biomass of young coffee ( ) after both 21 and 28 days of drought stress, indicating that root biomass may be the most important factor determining drought tolerance in coffee varieties. 1. Introduction Coffee (Coffea arabica) is produced in many developing countries contributing significantly to poverty alleviation and national economic development. In addition to the importance of coffee in many African national economies in terms of GDP and export earnings, it is directly linked to poverty alleviation as the majority of producers are smallholder farmers, and many rely only on coffee for socioeconomic development [1, 2]. The majority of the coffee produced in Southern Africa is Arabica coffee (Coffea arabica L.) which requires well-distributed rainfalls totaling over 1000?mm per year and temperatures between 24 and 26°C [3–5]. In Zimbabwe, coffee is produced in the eastern highlands districts of Chipinge, Chimanimani, Mutare, and Mutasa where natural climatic conditions approximate requirements and in the northern parts of the country in Guruve, Harare, and Mhangura districts under managed conditions [6, 7]. Coffee is a unique and legal source of income for many smallholder farmers and, as such, production has expanded from traditional areas to marginal areas where meeting crop water requirement is a serious challenge. In addition, in traditional production areas rainfall patterns have become unpredictable and unreliable exposing the coffee plants to frequent and often severe droughts [8, 9]. Changing weather patterns due to climate change and variability are projected to reduce

References

[1]  ADBG, “Coffee production in Africa and the Global Market situation,” Commodity Market Brief 1, 2010.
[2]  P. Baker, J. Bentley, C. Charveriat, H. Dugne, T. Leftoy, and H. Munyua, “The coffee smallholder,” in Coffee Futures: A Source Book of Some Critical Issues Confronting the Coffee Industries, P. Baker, Ed., p. 111, CABI-FEDERACAFE-USDA-ICO, Chinchiná, Colombia, 2001.
[3]  J. Coste, Coffee: The Plant and the Product, Longman, New York, NY, USA, 1992.
[4]  W. J. C. Logan and J. Biscoe, Coffee Handbook, Coffee Growers Association, Harare, Zimbabwe, 1987.
[5]  T. S. Murphy, N. A. Phiri, K. Sreedharan, D. Kutywayo, and C. Chanika, “Integrated stem borer management in smallholder coffee farms in India, Malawi and Zimbabwe,” Final Technical Report, 2008.
[6]  A. Chemura, C. Mahoya, D. Kutywayo, and P. Chidoko, “The growth response of coffee plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation levels,” in Proceedings of the RCZ International Research Symposium, vol. 1, HICC, Research Council of Zimbabwe, Harare, Zimbabwe, February 2013.
[7]  D. Kutywayo, A. Chemura, W. Kusena, P. Chidoko, and C. Mahoya, “The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe,” PloS ONE, vol. 8, no. 8, Article ID e73432, 2013.
[8]  M. Maestri, F. M. Da Matta, A. J. Regazzi, and R. S. Barros, “Water relations of coffee leaves (Coffea arabica and C. canephora) in response to drought,” Journal of Horticultural Science, vol. 68, pp. 741–746, 1993.
[9]  J. Haggar and K. Schepp, Coffee and Climate Change, University of Greenwich, London, UK, 2011.
[10]  P. Baker and J. Haggar, “Global warming: effects on global coffee,” in Proceedings of the Specialty Coffee Association of America Conference Handout (SCAA '07), p. 14, Long Beach, Calif, USA, 2007.
[11]  International Coffee Organization, “Climate change and coffee,” in Proceedings of the 103rd Session of International Coffee Organizatoin (ICO '09), p. 14, International Coffee Council, London, UK, 2009.
[12]  P. Laderach, A. Jarvis, and J. Ramirez, “The impact of climate change in coffee-growing regions: the case of 10 municipalities in Nicaragua,” CafeDirect/GTZ, GTZ, 2006.
[13]  G. Schroth, P. Laderach, J. Dempewolf et al., “Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico,” Mitigation and Adaptation Strategies for Global Change, vol. 14, no. 7, pp. 605–625, 2009.
[14]  C. Gay, F. Estrada, C. Conde, H. Eakin, and L. Villers, “Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico,” Climatic Change, vol. 79, no. 3-4, pp. 259–288, 2006.
[15]  R. Ghini, W. Bettiol, and E. Hamada, “Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives,” Plant Pathology, vol. 60, no. 1, pp. 122–132, 2011.
[16]  S. G. Tesfaye, M. R. Ismail, H. Kausar, M. Marziah, and M. F. Ramlan, “Plant water relations, crop yield and quality of arabica coffee (Coffea arabica) as affected by supplemental deficitirrigation,” International Journal of Agriculture & Biology, vol. 15, pp. 665–672, 2013.
[17]  B. M. Gichimu, Arabica Coffee Breeding: Challenges Posed by Climate Change, Kampala, Uganda, 2013.
[18]  M. P. Reynolds, D. Hays, and S. Chapman, “Breeding for adaptation to heat and drought stress,” in Climate Change and Crop Production, M. P. Reynolds, Ed., pp. 71–92, CABI, Oxfordshire, UK, 2010.
[19]  D. Kutywayo, V. Chingwara, C. Mahoya, A. Chemura, and J. Masaka, “The effect of different levels of irrigation water and nitrogen fertilizer on vegetative growth components and yield of coffee in Zimbabwe,” Journal of Science and Technology MSU, vol. 2, pp. 45–54, 2010.
[20]  A. Arendse and T. A. Crane, “Impacts of climate change on smallholder farmers in Africa and their adaptation strategies: what are the roles for research?” in Proceedings of the International Symposium and Consultation: Centro Internacional de Agricultura Tropical (CIAT '10), p. 29, Pan-Africa Bean Research Alliance (PABRA), Arusha, Tanzania, 2010.
[21]  F. M. DaMatta, A. R. M. Chaves, H. A. Pinheiro, C. Ducatti, and M. E. Loureiro, “Drought tolerance of two field-grown clones of Coffea canephora,” Plant Science, vol. 164, no. 1, pp. 111–117, 2003.
[22]  F. R. C. F. César, S. N. Matsumoto, A. E. S. Viana, M. A. F. Santos, and J. A. Bonfim, “Leaf morphophysiology of coffee plants under different levels of light restriction,” Coffee Science, vol. 5, no. 3, pp. 262–271, 2010.
[23]  F. M. DaMatta, “Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding,” Brazilian Journal of Plant Physiology, vol. 16, no. 1, pp. 1–6, 2004.
[24]  P. C. Dias, W. L. Araujo, G. A. B. K. Moraes, R. S. Barros, and F. M. DaMatta, “Morphological and physiological responses of two coffee progenies to soil water availability,” Journal of Plant Physiology, vol. 164, no. 12, pp. 1639–1647, 2007.
[25]  M. Worku and T. Astatkie, “Dry matter partitioning and physiological responses of Coffea arabica varieties to soil moisture deficit stress at the seedling stage in Southwest Ethiopia,” African Journal of Agricultural Research, vol. 5, no. 15, pp. 2066–2072, 2010.
[26]  N. C. Turner, “Further progress in crop water relations,” Advances in Agronomy, vol. 58, pp. 293–338, 1997.
[27]  S. Haffani, M. Mezni, and W. Cha?bi, “Effect of drought on growth and chlorophyll content in three Vetch species,” IOSR Journal of Agriculture and Veterinary Science, vol. 2, pp. 50–56, 2013.
[28]  P. Chidoko, C. Mahoya, A. Chemura, and D. Kutywayo, “Evaluation of the efficacy of Lantana camara, Albizia versicolor and Allium sativum for the control of coffee leaf rust under laboratory conditions,” in Proceedings of the 1st International Conference on Pesticidal Plants (ICPP '13), J. O. Ogendo, C. W. Lukhoba, P. K. Bett, and A. K. Machocho, Eds., ADAAPT Network, Nairobi, Kenya, 2013.
[29]  A. Chemura, R. Madhlazi, and C. Mahoya, “Recycled coffee wastes as potential replacements of inorganic fertilizers for coffee production,” in Proceedings of the 22nd International Conference on Coffee Science (ASIC '08), pp. 1197–1201, Campinas, Brazil, September 2008.
[30]  R. Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
[31]  DR&SS, “Annual Summary Report Division of Crops Research,” Tech. Rep., Department of Research & Specialist Services, Harare, Zimbabwe, 2011.
[32]  A. Chemura, C. Mahoya, and D. Kutywayo, “Effect of organic nursery media on germination and initial growth of coffee seedlings,” in Proceedings of the 23rd Colloquium of the Association for Science and Information on Coffee (ASIC '10), p. 11, Bali, Indonesia, October 2010.
[33]  P. Chidoko, An Assessment of Genetic Diversity in Zimbabwean Coffee Varieties Using Morphological Markers [MSc], University of Zimbabwe, Harare, Zimbabwe, 2012.
[34]  R. L. S. Ramos and A. Carvalho, “Shoot and root evaluations on seedlings from Coffea genotypes,” Bragantia, vol. 56, no. 1, pp. 59–68, 1997.
[35]  A. Blum, “Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?” Australian Journal of Agricultural Research, vol. 56, no. 11, pp. 1159–1168, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413