全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Allergy  2013 

Innate Immune Responses in House Dust Mite Allergy

DOI: 10.1155/2013/735031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sensitizations to house dust mites (HDM) trigger strong exacerbated allergen-induced inflammation of the skin and airways mucosa from atopic subjects resulting in atopic dermatitis as well as allergic rhinitis and asthma. Initially, the Th2-biased HDM allergic response was considered to be mediated only by allergen B- and T-cell epitopes to promote allergen-specific IgE production as well as IL-4, IL-5, and IL-13 to recruit inflammatory cells. But this general molecular model of HDM allergenicity must be revisited as a growing literature suggests that stimulations of innate immune activation pathways by HDM allergens offer new answers to the following question: what makes an HDM allergen an allergen? Indeed, HDM is a carrier not only for allergenic proteins but also microbial adjuvant compounds, both of which are able to stimulate innate signaling pathways leading to allergy. This paper will describe the multiple ways used by HDM allergens together with microbial compounds to control the initiation of the allergic response through engagement of innate immunity. 1. Introduction House dust mites (HDM; Dermatophagoides sp.) are one of the commonest sources of airborne allergens worldwide and we can consider that HDM sensitization affects more than 15–20% of the population from industrialized countries [1]. Atopic patients exposed to HDM allergens develop potent inflammatory diseases in such allergic asthma, perennial rhinitis, and atopic dermatitis (AD) [2]. Experimental evidences suggest that HDM allergen-specific Th2 cells play the central role in the allergic inflammatory response inducing the production of allergen-specific IgE, the eosinophil recruitment in tissues, the permissiveness of endothelium for the recruitment of inflammatory cells to inflamed lungs, the production of mucus, and the modulation of the airway smooth muscle contraction. Notably, the Th2 cytokines IL-4, IL-5, IL-13 orchestrate these inflammatory processes: IL-4 is important for allergic sensitization and IgE production, eosinophil survival depends mainly on IL-5, whereas IL-13 has pleiotropic effects in the lungs, including a central role in the development of AHR and tissue remodeling [3]. Despite the high prevalence of HDM allergy, the precise nature of the cellular and molecular networks that initiate and regulate this Th2-biased response is still unclear. Recent advances clearly demonstrated that the HDM allergic response can no longer be considered as a unique dys-regulation of the adaptive immune system. Actually, a crosstalk between the innate and adaptive immune system

References

[1]  J. P. Zock, J. Heinrich, D. Jarvis et al., “Distribution and determinants of house dust mite allergens in Europe: the European Community Respiratory Health Survey II,” Journal of Allergy and Clinical Immunology, vol. 118, no. 3, pp. 682–690, 2006.
[2]  S. H. Arshad, “Does exposure to indoor allergens contribute to the development of asthma and allergy?” Current Allergy and Asthma Reports, vol. 10, no. 1, pp. 49–55, 2010.
[3]  S. J. Galli, M. Tsai, and A. M. Piliponsky, “The development of allergic inflammation,” Nature, vol. 454, no. 7203, pp. 445–454, 2008.
[4]  M. A. M. Willart and B. N. Lambrecht, “The danger within: endogenous danger signals, atopy and asthma,” Clinical and Experimental Allergy, vol. 39, no. 1, pp. 12–19, 2009.
[5]  R. M. Steinman, “Decisions about dendritic cells: past, present, and future,” Annual Review of Immunology, vol. 30, pp. 1–22, 2012.
[6]  B. N. Lambrecht and H. Hammad, “The role of dendritic and epithelial cells as master regulators of allergic airway inflammation,” The Lancet, vol. 376, no. 9743, pp. 835–843, 2010.
[7]  A. A. van Beek, E. F. Knol, P. de Vos, M. J. Smelt, H. F. Savelkoul, and R. J. van Neerven, “Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses?” International Archives of Allergy and Immunology, vol. 160, pp. 7–17, 2012.
[8]  C. L. Sokol, N. Q. Chu, S. Yu, S. A. Nish, T. M. Laufer, and R. Medzhitov, “Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response,” Nature Immunology, vol. 10, no. 7, pp. 713–720, 2009.
[9]  H. Hammad, M. Plantinga, K. Deswarte et al., “Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2097–2111, 2010.
[10]  D. Proud and R. Leigh, “Epithelial cells and airway diseases,” Immunological Reviews, vol. 242, no. 1, pp. 186–204, 2011.
[11]  B. N. Lambrecht and H. Hammad, “The airway epithelium in asthma,” Nature Medicine, vol. 18, pp. 684–692, 2012.
[12]  C. M. Williams, S. Rahman, C. Hubeau, and H. L. Ma, “Cytokine pathways in allergic disease,” Toxicologic Pathology, vol. 40, no. 2, pp. 205–215, 2012.
[13]  K. R. Bartemes and H. Kita, “Dynamic role of epithelium-derived cytokines in asthma,” Clinical Immunology, vol. 143, no. 3, pp. 222–235, 2012.
[14]  H. Spits and T. Cupedo, “Innate lymphoid cells: emerging insights in development, lineage relationships, and function,” Annual Review of Immunology, vol. 30, pp. 647–675, 2012.
[15]  O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010.
[16]  G. Y. Chen and G. Nu?ez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010.
[17]  D. Parker and A. Prince, “Innate immunity in the respiratory epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 2, pp. 189–201, 2011.
[18]  W. R. Thomas, “Geography of house dust mite allergens,” Asian Pacific Journal of Allergy and Immunology, vol. 28, no. 4, pp. 211–224, 2010.
[19]  J. C. Bessot and G. Pauli, “Mite allergens: an overview,” European Annals of Allergy and Clinical Immunology, vol. 43, pp. 141–156, 2011.
[20]  M. D. Chapman, A. Pomés, H. Breiteneder, and F. Ferreira, “Nomenclature and structural biology of allergens,” The Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 414–420, 2007.
[21]  W. R. Thomas, W. A. Smith, B. J. Hales, K. L. Mills, and R. M. O'Brien, “Characterization and immunobiology of house dust mite allergens,” International Archives of Allergy and Immunology, vol. 129, no. 1, pp. 1–18, 2002.
[22]  B. Thomas, P. Heap, and F. Carswell, “Ultrastructural localization of the allergen Der p I in the gut of the house dust mite dermatophagoides pteronyssinus,” International Archives of Allergy and Applied Immunology, vol. 94, no. 1–4, pp. 365–367, 1991.
[23]  W. R. Thomas, B. J. Hales, and W. A. Smith, “House dust mite allergens in asthma and allergy,” Trends in Molecular Medicine, vol. 16, no. 7, pp. 321–328, 2010.
[24]  F. R. Lake, L. D. Ward, R. J. Simpson, P. J. Thompson, and G. A. Stewart, “House dust mite-derived amylase: alergenicity and physicochemical characterization,” Journal of Allergy and Clinical Immunology, vol. 87, no. 6, pp. 1035–1042, 1991.
[25]  C. H. Huang, L. M. Liew, K. W. Mah, I. C. Kuo, B. W. Lee, and K. Y. Chua, “Characterization of glutathione S-transferase from dust mite, Der p 8 and its immunoglobulin E cross-reactivity with cockroach glutathione S-transferase,” Clinical and Experimental Allergy, vol. 36, no. 3, pp. 369–376, 2006.
[26]  B. J. Hales, I. A. Laing, L. J. Pearce et al., “Distinctive immunoglobulin E anti-house dust allergen-binding specificities in a tropical australian aboriginal community,” Clinical and Experimental Allergy, vol. 37, no. 9, pp. 1357–1363, 2007.
[27]  S. E. O'Neil, T. K. Heinrich, B. J. Hales et al., “The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus,” Clinical and Experimental Allergy, vol. 36, no. 6, pp. 831–839, 2006.
[28]  Y. J. Kyoung, C. S. Hong, and T. S. Yong, “Allergenic tropomyosins and their cross-reactivities,” Protein and Peptide Letters, vol. 13, no. 8, pp. 835–845, 2006.
[29]  L. C. Tsai, H. J. Peng, C. S. Lee et al., “Molecular cloning and characterization of full-length cDNAs encoding a novel high-molecular-weight Dermatophagoides pteronyssinus mite allergen, Der p 11,” Allergy, vol. 60, no. 7, pp. 927–937, 2005.
[30]  S. Kawamoto, T. Suzuki, T. Aki et al., “Der f 16: A novel gelsolin-related molecule identified as an allergen from the house dust mite, Dermatophagoides farinae,” FEBS Letters, vol. 516, no. 1–3, pp. 234–238, 2002.
[31]  S. Kawamoto, T. Aki, M. Yamashita et al., “Toward elucidating the full spectrum of mite allergens—state of the art,” Journal of Bioscience and Bioengineering, vol. 94, no. 4, pp. 285–298, 2002.
[32]  E. R. Tovey, M. D. Chapman, and T. A. E. Platts-Mills, “Mite faeces are a major source of house dust allergens,” Nature, vol. 289, no. 5798, pp. 592–593, 1981.
[33]  T. A. E. Platts-Mills, P. W. Heymann, J. L. Longbottom, and S. R. Wilkins, “Airborne allergens associated with asthma: particle sizes carrying dust mite and rat allergens measured with a cascade impactor,” Journal of Allergy and Clinical Immunology, vol. 77, no. 6, pp. 850–857, 1986.
[34]  J. Douwes, A. Zuidhof, G. Doekes et al., “(1→3)-β-D-glucan and endotoxin in house dust and peak flow variability in children,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, pp. 1348–1354, 2000.
[35]  C. R. Valerio, P. Murray, L. G. Arlian, and J. E. Slater, “Bacterial 16S ribosomal DNA in house dust mite cultures,” Journal of Allergy and Clinical Immunology, vol. 116, no. 6, pp. 1296–1300, 2005.
[36]  A. Andersen, “Nutritional value of yeast for Dermatophagoides pteronyssinus (Acari: Epidermoptidae) and the antigenic and allergenic composition of extracts during extended culturing,” Journal of Medical Entomology, vol. 28, no. 4, pp. 487–491, 1991.
[37]  S. Post, M. C. Nawijn, T. L. Hackett et al., “The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation,” Thorax, vol. 67, no. 6, pp. 488–495, 2012.
[38]  W. R. Thomas, “The advent of recombinant allergens and allergen cloning,” Journal of Allergy and Clinical Immunology, vol. 127, no. 4, pp. 855–859, 2011.
[39]  C. Braun-Fahrl?nder, J. Riedler, U. Herz et al., “Environmental exposure to endotoxin and its relation to asthma in school-age children,” The New England Journal of Medicine, vol. 347, no. 12, pp. 869–877, 2002.
[40]  J. E. Gereda, D. Y. M. Leung, A. Thatayatikom et al., “Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma,” The Lancet, vol. 355, no. 9216, pp. 1680–1683, 2000.
[41]  M. Werner, R. Topp, K. Wimmer et al., “TLR4 gene variants modify endotoxin effects on asthma,” Journal of Allergy and Clinical Immunology, vol. 112, no. 2, pp. 323–330, 2003.
[42]  I. A. Yang, S. J. Barton, S. Rorke et al., “Toll-like receptor 4 polymorphism and severity of atopy in asthmatics,” Genes and Immunity, vol. 5, no. 1, pp. 41–45, 2004.
[43]  I. A. Yang, S. T. Holgate, and J. W. Holloway, “Toll-like receptor polymorphisms and allergic disease: Interpreting the evidence from genetic studies,” Clinical and Experimental Allergy, vol. 34, no. 2, pp. 163–166, 2004.
[44]  S. C. Eisenbarth, D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick, and K. Bottomly, “Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen,” Journal of Experimental Medicine, vol. 196, no. 12, pp. 1645–1651, 2002.
[45]  S. K. Lundy, A. A. Berlin, and N. W. Lukacs, “Interleukin-12-independent down-modulation of cockroach antigen-induced asthma in mice by intranasal exposure to bacterial lipopolysaccharid,” American Journal of Pathology, vol. 163, no. 5, pp. 1961–1968, 2003.
[46]  S. Phipps, C. E. Lam, G. E. Kaiko et al., “Toll/IL-1 signaling is critical for house dust mite-specific Th1 and Th2 responses,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 10, pp. 883–893, 2009.
[47]  H. Hammad, M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht, “House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells,” Nature Medicine, vol. 15, no. 4, pp. 410–416, 2009.
[48]  M. A. Willart, K. Deswarte, P. Pouliot et al., “Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33,” The Journal of Experimental Medicine, vol. 209, no. 8, pp. 1505–1517, 2012.
[49]  T. Marichal, D. Bedoret, C. Mesnil et al., “Interferon response factor 3 is essential for house dust mite-induced airway allergy,” Journal of Allergy and Clinical Immunology, vol. 126, no. 4, pp. 836–844.e13, 2010.
[50]  L. Guillott, S. Medjane, K. Le-Barillec et al., “Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2712–2718, 2004.
[51]  H. P. Jia, J. N. Kline, A. Penisten et al., “Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2,” American Journal of Physiology, vol. 287, no. 2, pp. L428–L437, 2004.
[52]  A. Trompette, S. Divanovic, A. Visintin et al., “Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein,” Nature, vol. 457, no. 7229, pp. 585–588, 2009.
[53]  S. Ichikawa, T. Takai, T. Yashiki et al., “Lipopolysaccharide binding of the mite allergen Der f 2,” Genes to Cells, vol. 14, no. 9, pp. 1055–1065, 2009.
[54]  Y. L. Chiou and C. Y. Lin, “Der p2 activates airway smooth muscle cells in a TLR2/ MyD88-dependent manner to induce an inflammatory response,” Journal of Cellular Physiology, vol. 220, no. 2, pp. 311–318, 2009.
[55]  J. J. Tsai, S. H. Liu, S. C. Yin et al., “Mite allergen Der-p2 triggers human B lymphocyte activation and Toll-like receptor-4 induction,” PLoS ONE, vol. 6, Article ID e23249, 2011.
[56]  G. A. Mueller, R. A. Gosavi, J. M. Krahn et al., “Der p 5 crystal structure provides insight into the group 5 dust mite allergens,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25394–25401, 2010.
[57]  H. F. Kauffman, M. Tamm, J. A. B. Timmerman, and P. Borger, “House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms,” Clinical and Molecular Allergy, vol. 4, article 5, 2006.
[58]  G. A. Mueller, L. L. Edwards, J. J. Aloor et al., “The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins,” Journal of Allergy and Clinical Immunology, vol. 125, no. 4, pp. 909–917.e4, 2010.
[59]  K. W. Tan, C. Jobichen, T. C. Ong et al., “Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae,” PLoS ONE, vol. 7, Article ID e44850, 2012.
[60]  R. H. Wilson, S. Maruoka, G. S. Whitehead et al., “The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens,” Nature Medicine, vol. 18, no. 11, pp. 1705–1710, 2012.
[61]  S. Bhowmick, D. Chatterjee, and K. Chaudhuri, “Human epithelial cells stimulated with Vibrio cholerae produce thymic stromal lymphopoietin and promote dendritic cell-mediated inflammatory Th2 response,” The International Journal of Biochemistry & Cell Biology, vol. 44, no. 11, pp. 1779–1790, 2012.
[62]  T. A. Le, T. Takai, A. T. Vu et al., “Flagellin induces the expression of thymic stromal lymphopoietin in human keratinocytes via toll-like receptor 5,” International Archives of Allergy and Immunology, vol. 155, no. 1, pp. 31–37, 2011.
[63]  J. H. Ryu, J. Y. Yoo, M. J. Kim et al., “Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways,” Journal of Allergy and Clinical Immunology, vol. 6749, no. 12, pp. 1301–1302, 2012.
[64]  A. T. Nathan, E. A. Peterson, J. Chakir, and M. Wills-Karp, “Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan-dependent pathways,” Journal of Allergy and Clinical Immunology, vol. 123, no. 3, pp. 612–618, 2009.
[65]  W. K. Sun, X. Lu, X. Li et al., “Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 31, no. 10, pp. 2755–2764, 2012.
[66]  N. A. Barrett, A. Maekawa, O. M. Rahman, K. F. Austen, and Y. Kanaoka, “Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells,” Journal of Immunology, vol. 182, no. 2, pp. 1119–1128, 2009.
[67]  N. A. Barrett, O. M. Rahman, J. M. Fernandez et al., “Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes,” Journal of Experimental Medicine, vol. 208, no. 3, pp. 593–604, 2011.
[68]  P. J. Royer, M. Emara, C. Yang et al., “The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity,” Journal of Immunology, vol. 185, no. 3, pp. 1522–1531, 2010.
[69]  M. Emara, P. J. Royer, J. Mahdavi, F. Shakib, and A. M. Ghaemmaghami, “Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite,” The Journal of Biological Chemistry, vol. 287, pp. 5756–5763, 2012.
[70]  S. C. Hsu, C. H. Chen, S. H. Tsai et al., “Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells,” Journal of Biological Chemistry, vol. 285, no. 11, pp. 7903–7910, 2010.
[71]  A. Al-Ghouleh, R. Johal, I. K. Sharquie et al., “The glycosylation pattern of common allergens: the recognition and uptake of Der p 1 by epithelial and dendritic cells is carbohydrate dependent,” PLoS ONE, vol. 7, Article ID e33929, 2012.
[72]  H. J. Huang, Y. L. Lin, C. F. Liu, H. F. Kao, and J. Y. Wang, “Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma,” Mucosal Immunology, vol. 4, pp. 519–527, 2011.
[73]  C. G. Lee, C. A. Da Silva, C. S. Dela Cruz et al., “Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury,” Annual Review of Physiology, vol. 73, pp. 479–501, 2011.
[74]  T. A. Reese, H. E. Liang, A. M. Tager et al., “Chitin induces accumulation in tissue of innate immune cells associated with allergy,” Nature, vol. 447, no. 7140, pp. 92–96, 2007.
[75]  R. M. Roy, M. Wüthrich, and B. S. Klein, “Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung,” The Journal of Immunology, vol. 189, no. 5, pp. 2545–2552, 2012.
[76]  Z. Zhu, T. Zheng, R. J. Homer et al., “Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation,” Science, vol. 304, no. 5677, pp. 1678–1682, 2004.
[77]  L. J. Fitz, C. DeClercq, J. Brooks et al., “Acidic mammalian chitinase is not a critical target for allergic airway disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 46, pp. 71–79, 2012.
[78]  L. Franchi, R. Mu?oz-Planillo, and G. Nú?ez, “Sensing and reacting to microbes through the inflammasomes,” Nature Immunology, vol. 13, pp. 325–332, 2012.
[79]  M. Kool, M. Willart, M. van Nimwegen et al., “An unexpected role for uric acid as an inducer of T helper 2 cell immunity to Inhaled antigens and inflammatory mediator of allergic asthma,” Immunity, vol. 34, no. 4, pp. 527–540, 2011.
[80]  I. C. Allen, C. M. Jania, J. E. Wilson et al., “Analysis of NLRP3 in the development of allergic airway disease in mice,” The Journal of Immunology, vol. 188, no. 6, pp. 2884–2893, 2012.
[81]  X. Dai, K. Sayama, M. Tohyama et al., “Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes,” Journal of Allergy and Clinical Immunology, vol. 127, no. 3, pp. 806–814, 2011.
[82]  F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Gout-associated uric acid crystals activate the NALP3 inflammasome,” Nature, vol. 440, no. 7081, pp. 237–241, 2006.
[83]  C. J. Chen, Y. Shi, A. Hearn et al., “MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2262–2271, 2006.
[84]  M. Idzko, H. Hammad, M. Van Nimwegen et al., “Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells,” Nature Medicine, vol. 13, no. 8, pp. 913–919, 2007.
[85]  T. Müller, R. P. Vieira, M. Grimm et al., “A potential role for P2X7R in allergic airway inflammation in mice and humans,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, pp. 456–464, 2011.
[86]  N. A. Kalsheker, S. Deam, L. Chambers, S. Sreedharan, K. Brocklehurst, and D. A. Lomas, “The house dust mite allergen Der p1 catalytically inactivates α1-antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma,” Biochemical and Biophysical Research Communications, vol. 221, no. 1, pp. 59–61, 1996.
[87]  A. Brown, K. Farmer, L. MacDonald et al., “House dust mite Der P 1 downregulates defenses of the lung by inactivating elastase inhibitors,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 3 I, pp. 381–389, 2003.
[88]  R. Deb, F. Shakib, K. Reid, and H. Clark, “Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D,” The Journal of Biological Chemistry, vol. 282, no. 51, pp. 36808–36819, 2007.
[89]  J. Y. Wang and K. B. M. Reid, “The immunoregulatory roles of lung surfactant collectins SP-A, and SP-D, in allergen-induced airway inflammation,” Immunobiology, vol. 212, no. 4-5, pp. 417–425, 2007.
[90]  C. F?rster, “Tight junctions and the modulation of barrier function in disease,” Histochemistry and Cell Biology, vol. 130, no. 1, pp. 55–70, 2008.
[91]  S. T. Holgate, “Epithelium dysfunction in asthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1233–1244, 2007.
[92]  C. A. Herbert, C. M. King, P. C. Ring et al., “Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 4, pp. 369–378, 1995.
[93]  N. Roche, T. C. Chinet, N. E. Belouchi, C. Julie, and G. J. Huchon, “Dermatophagoides pteronyssinus and bioelectric properties of airway epithelium: role of cysteine proteases,” European Respiratory Journal, vol. 16, no. 2, pp. 309–315, 2000.
[94]  S. S. J. Sung, S. M. Fu, C. E. Rose Jr., F. Gaskin, S. T. Ju, and S. R. Beaty, “A major lung CD103 ( )- integrin–positive epithelial dendritic cell population expressing langerin and tight junction proteins,” Journal of Immunology, vol. 176, no. 4, pp. 2161–2172, 2006.
[95]  H. Wan, H. L. Winton, C. Soeller et al., “Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1,” Clinical and Experimental Allergy, vol. 30, no. 5, pp. 685–698, 2000.
[96]  H. Wan, H. L. Winton, C. Soeller et al., “The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus,” Clinical and Experimental Allergy, vol. 31, no. 2, pp. 279–294, 2001.
[97]  C. Dale and N. Vergnolle, “Protease signaling to G protein-coupled receptors: implications for inflammation and pain,” Journal of Receptors and Signal Transduction, vol. 28, no. 1-2, pp. 29–37, 2008.
[98]  P. Rallabhandi, Q. M. Nhu, V. Y. Toshchakov et al., “Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity,” The Journal of Biological Chemistry, vol. 283, no. 36, pp. 24314–24325, 2008.
[99]  M. C. Winter, S. S. Shasby, D. R. Ries, and D. M. Shasby, “PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: protective effect of β-agonists,” The American Journal of Physiology, vol. 291, no. 4, pp. L628–L635, 2006.
[100]  K. Kunzelmann, J. Sun, D. Markovich et al., “Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2),” The FASEB Journal, vol. 19, no. 8, pp. 969–970, 2005.
[101]  H. J. Cho, H. J. Lee, S. C. Kim et al., “Protease-activated receptor 2-dependent fluid secretion from airway submucosal glands by house dust mite extract,” Journal of Allergy and Clinical Immunology, vol. 129, no. 2, pp. 529–535, 2012.
[102]  H. J. Cho, J. Y. Choi, Y. M. Yang et al., “House dust mite extract activates apical Cl- channels through protease-activated receptor 2 in human airway epithelia,” Journal of Cellular Biochemistry, vol. 109, no. 6, pp. 1254–1263, 2010.
[103]  M. Pichavant, A. S. Charbonnier, S. Taront et al., “Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment,” Journal of Allergy and Clinical Immunology, vol. 115, no. 4, pp. 771–778, 2005.
[104]  C. King, S. Brennan, P. J. Thompson, and G. A. Stewart, “Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium,” Journal of Immunology, vol. 161, no. 7, pp. 3645–3651, 1998.
[105]  N. Asokananthan, P. T. Graham, D. J. Stewart et al., “House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1,” Journal of Immunology, vol. 169, no. 8, pp. 4572–4578, 2002.
[106]  E. Adam, K. K. Hansen, O. F. Astudillo et al., “The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism,” The Journal of Biological Chemistry, vol. 281, no. 11, pp. 6910–6923, 2006.
[107]  G. Sun, M. A. Stacey, M. Schmidt, L. Mori, and S. Mattoli, “Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells,” Journal of Immunology, vol. 167, no. 2, pp. 1014–1021, 2001.
[108]  T. Kato, T. Takai, T. Fujimura et al., “Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes,” Allergy, vol. 64, no. 9, pp. 1366–1374, 2009.
[109]  H. S. Yu, P. Angkasekwinai, S. H. Chang, Y. Chung, and C. Dong, “Protease allergens induce the expression of IL-25 via Erk and p38 MAPK pathway,” Journal of Korean Medical Science, vol. 25, no. 6, pp. 829–834, 2010.
[110]  H. Kouzaki, S. M. O'Grady, C. B. Lawrence, and H. Kita, “Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2,” Journal of Immunology, vol. 183, no. 2, pp. 1427–1434, 2009.
[111]  J. Shi, Q. Luo, F. Chen, D. Chen, G. Xu, and H. Li, “Induction of IL-6 and IL-8 by house dust mite allergen der p1 in cultured human nasal epithelial cells is associated with PAR/PI3K/NFκB signaling,” Journal for Oto-rhino-laryngology and Its Related Specialties, vol. 72, no. 5, pp. 256–265, 2010.
[112]  J. Zheng, W. Liu, Y. Fan et al., “Suppression of connexin 26 is related to protease-activated receptor 2-mediated pathway in patients with allergic rhinitis,” American Journal of Rhinology & Allergy, vol. 26, no. 1, pp. e5–e9, 2012.
[113]  A. M. Ghaemmaghami, L. Gough, H. F. Sewell, and F. Shakib, “The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level,” Clinical and Experimental Allergy, vol. 32, no. 10, pp. 1468–1475, 2002.
[114]  A. A. Hasan, A. M. Ghaemmaghami, L. Fairclough, A. Robins, H. F. Sewell, and F. Shakib, “Allergen-driven suppression of thiol production by human dendritic cells and the effect of thiols on T cell function,” Immunobiology, vol. 214, no. 1, pp. 2–16, 2009.
[115]  R. Furmonaviciene, A. M. Ghaemmaghami, S. E. Boyd et al., “The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses,” Clinical and Experimental Allergy, vol. 37, no. 2, pp. 231–242, 2007.
[116]  K. Maneechotesuwan, V. Wamanuttajinda, K. Kasetsinsombat et al., “Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, pp. 239–248, 2009.
[117]  A. Jacquet, “The role of the house dust mite-induced innate immunity in development of allergic response,” International Archives of Allergy and Immunology, vol. 155, no. 2, pp. 95–105, 2011.
[118]  M. Fukunaga, Y. Gon, S. Nunomura et al., “Protease-mediated house dust mite allergen-induced reactive oxygen species production by neutrophils,” International Archives of Allergy and Immunology, vol. 155, supplement 1, pp. 104–109, 2011.
[119]  T. L. Hackett, “Epithelial-mesenchymal transition in the pathophysiology of airway remodelling in asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 12, no. 1, pp. 53–59, 2012.
[120]  R. Halwani, S. Al-Muhsen, H. Al-Jahdali, and Q. Hamid, “Role of transforming growth factor-β in airway remodeling in asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 2, pp. 127–133, 2011.
[121]  S. T. Holgate, G. Roberts, H. S. Arshad, P. H. Howarth, and D. E. Davies, “The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis,” Proceedings of the American Thoracic Society, vol. 6, no. 8, pp. 655–659, 2009.
[122]  I. H. Heijink, D. S. Postma, J. A. Noordhoek, M. Broekema, and A. Kapus, “House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 69–79, 2010.
[123]  I. H. Heijink, A. Van Oosterhout, and A. Kapus, “Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction,” European Respiratory Journal, vol. 36, no. 5, pp. 1016–1026, 2010.
[124]  I. H. Heijink, P. M. Kies, H. F. Kauffman, D. S. Postma, A. J. M. Van Oosterhout, and E. Vellenga, “Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity,” Journal of Immunology, vol. 178, no. 12, pp. 7678–7685, 2007.
[125]  P. D. Frisella, J. Silverberg, R. Joks, and M. Frieri, “Transforming growth factor beta: a role in the upper airway and rhinosinusitis—Dermatophagoides pteronyssinus-induced apoptosis with pulmonary alveolar cells,” American Journal of Rhinology and Allergy, vol. 25, no. 4, pp. 231–235, 2011.
[126]  Y. Nakamura, M. Miyata, N. Shimokawa et al., “House dust mite allergen Der f 1 can induce the activation of latent TGF-β via its protease activity,” FEBS Letters, vol. 583, no. 12, pp. 2088–2092, 2009.
[127]  N. Miglino, M. Roth, M. Tamm, and P. Borger, “House dust mite extract downregulates C/EBPα in asthmatic bronchial smooth muscle cells,” European Respiratory Journal, vol. 38, no. 1, pp. 50–58, 2011.
[128]  C. ?sterlund, H. Gr?nlund, N. Polovic, S. Sundstr?m, G. Gafvelin, and A. Bucht, “The non-proteolytic house dust mite allergen der p 2 induce NF-κB and MAPK dependent activation of bronchial epithelial cells,” Clinical and Experimental Allergy, vol. 39, no. 8, pp. 1199–1208, 2009.
[129]  C. ?sterlund, H. Gr?nlund, G. Gafvelin, and A. Bucht, “Non-proteolytic aeroallergens from mites, cat and dog exert adjuvant-like activation of bronchial epithelial cells,” International Archives of Allergy and Immunology, vol. 155, no. 2, pp. 111–118, 2011.
[130]  Y. L. Ye, H. T. Wu, C. F. Lin et al., “Dermatophagoides pteronyssinus 2 regulates nerve growth factor release to induce airway inflammation via a reactive oxygen species-dependent pathway,” American Journal of Physiology, vol. 300, no. 2, pp. L216–L224, 2011.
[131]  S. Y. Park, J. H. Cho, D. Y. Oh et al., “House dust mite allergen Der f 2-induced phospholipase D1 activation is critical for the production of interleukin-13 through activating transcription factor-2 activation in human bronchial epithelial cells,” The Journal of Biological Chemistry, vol. 284, no. 30, pp. 20099–20110, 2009.
[132]  N. Krishnamoorthy, T. B. Oriss, M. Paglia et al., “Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma,” Nature Medicine, vol. 14, no. 5, pp. 565–573, 2008.
[133]  K. R. Bartemes and H. Kita, “Dynamic role of epithelium-derived cytokines in asthma,” Clinical Immunology, vol. 143, no. 3, pp. 222–235, 2012.
[134]  T. Ito, Y. H. Wang, O. Duramad et al., “TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1213–1223, 2005.
[135]  S. Ying, B. O'Connor, J. Ratoff et al., “Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity,” Journal of Immunology, vol. 174, no. 12, pp. 8183–8190, 2005.
[136]  M. Harada, T. Hirota, A. I. Jodo et al., “Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, pp. 787–793, 2011.
[137]  M. C. Siracusa, S. A. Saenz, D. A. Hill et al., “TSLP promotes interleukin-3independent basophil haematopoiesis and type 2 inflammation,” Nature, vol. 477, pp. 229–233, 2011.
[138]  M. Milovanovic, V. Volarevic, G. Radosavljevic et al., “IL-33/ST2 axis in inflammation and immunopathology,” Immunologic Research, vol. 52, no. 1-2, pp. 89–99, 2012.
[139]  D. Préfontaine, J. Nadigel, F. Chouiali et al., “Increased IL-33 expression by epithelial cells in bronchial asthma,” Journal of Allergy and Clinical Immunology, vol. 125, no. 3, pp. 752–754, 2010.
[140]  J. Schmitz, A. Owyang, E. Oldham et al., “IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines,” Immunity, vol. 23, no. 5, pp. 479–490, 2005.
[141]  M. A. Rank, T. Kobayashi, H. Kozaki, K. R. Bartemes, D. L. Squillace, and H. Kita, “IL-33-activated dendritic cells induce an atypical TH2-type response,” Journal of Allergy and Clinical Immunology, vol. 123, no. 5, pp. 1047–1054, 2009.
[142]  Y. H. Wang, P. Angkasekwinai, N. Lu et al., “IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1837–1847, 2007.
[143]  M. M. Fort, J. Cheung, D. Yen et al., “IL-25 Induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo,” Immunity, vol. 15, no. 6, pp. 985–995, 2001.
[144]  P. Angkasekwinai, H. Park, Y. H. Wang et al., “Interleukin 25 promotes the initiation of proallergic type 2 responses,” Journal of Experimental Medicine, vol. 204, no. 7, pp. 1509–1517, 2007.
[145]  Y. Zhao, J. Yang, Y. D. Gao, and W. Guo, “Th17 immunity in patients with allergic asthma,” International Archives of Allergy and Immunology, vol. 151, no. 4, pp. 297–307, 2010.
[146]  Y. J. Chang, H. Y. Kim, L. A. Albacker et al., “Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity,” Nature Immunology, vol. 12, no. 7, pp. 631–638, 2011.
[147]  J. M. Mj?sberg, S. Trifari, N. K. Crellin et al., “Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161,” Nature Immunology, vol. 12, pp. 1055–1062, 2011.
[148]  R. G. Wolterink, A. Kleinjan, M. van Nimwegen et al., “Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma,” European Journal of Immunology, vol. 42, pp. 1106–1116, 2012.
[149]  D. K. Chu, A. Llop-Guevara, T. D. Walker et al., “IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization,” Journal of Allergy and Clinical Immunology, vol. 6749, no. 12, p. 1283, 2012.
[150]  N. Fuiano and C. Incorvaia, “Dissecting the causes of atopic dermatitis in children: less foods, more mites,” Allergology International, vol. 61, pp. 231–243, 2012.
[151]  S. J. Brown and W. H. McLean, “One remarkable molecule: filaggrin,” Journal of Investigative Dermatology, vol. 132, pp. 751–762, 2012.
[152]  L. Maintz and N. Novak, “Modifications of the innate immune system in atopic dermatitis,” Journal of Innate Immunity, vol. 3, no. 2, pp. 131–141, 2011.
[153]  M. Boguniewicz and D. Y. M. Leung, “Atopic dermatitis. A disease of altered skin barrier and immune dys-regulation,” Immunological Reviews, vol. 242, pp. 233–246, 2011.
[154]  J. M. Spergel and A. S. Paller, “Atopic dermatitis and the atopic march,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, pp. S118–S127, 2003.
[155]  H. Yasueda, A. Saito, K. Nishioka, K. Kutsuwada, and K. Akiyama, “Measurement of Dermatophagoides mite allergens on bedding and human skin surfaces,” Clinical and Experimental Allergy, vol. 33, no. 12, pp. 1654–1658, 2003.
[156]  P. S. Friedmann, “The role of dust mite antigen sensitization and atopic dermatitis,” Clinical and Experimental Allergy, vol. 29, no. 7, pp. 869–872, 1999.
[157]  B. B. Tan, D. Weald, I. Strickland, and P. S. Friedmann, “Double-blind controlled trial of effect of housedust-mite allergen avoidance on atopic dermatitis,” The Lancet, vol. 347, no. 8993, pp. 15–18, 1996.
[158]  T. Nakamura, Y. Hirasawa, T. Takai et al., “Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1,” Journal of Investigative Dermatology, vol. 126, no. 12, pp. 2719–2723, 2006.
[159]  S. K. Jeong, H. J. Kim, J. K. Youm et al., “Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1930–1939, 2008.
[160]  T. Oshio, Y. Sasaki, M. Funakoshi-Tago et al., “Dermatophagoides farinae extract induces severe atopic dermatitis in NC/Nga mice, which is effectively suppressed by the administration of tacrolimus ointment,” International Immunopharmacology, vol. 9, no. 4, pp. 403–411, 2009.
[161]  L. G. Arlian, M. S. Morgan, and K. T. Peterson, “House dust and storage mite extracts influence skin keratinocyte and fibroblast function,” International Archives of Allergy and Immunology, vol. 145, no. 1, pp. 33–42, 2008.
[162]  S. Maeda, S. Maeda, S. Shibata, N. Chimura, and T. Fukata, “House dust mite major allergen Der f 1 enhances proinflammatory cytokine and chemokine gene expression in a cell line of canine epidermal keratinocytes,” Veterinary Immunology and Immunopathology, vol. 131, no. 3-4, pp. 298–302, 2009.
[163]  T. Ogawa, T. Takai, T. Kato et al., “Upregulation of the release of granulocyte-macrophage colony-stimulating factor from keratinocytes stimulated with cysteine protease activity of recombinant major mite allergens, Der f 1 and Der p 1,” International Archives of Allergy and Immunology, vol. 146, no. 1, pp. 27–35, 2008.
[164]  L. G. Arlian and M. S. Morgan, “Immunomodulation of skin cytokine secretion by house dust mite extracts,” International Archives of Allergy and Immunology, vol. 156, no. 2, pp. 171–178, 2011.
[165]  T. Roelandt, C. Heughebaert, and J. P. Hachem, “Proteolytically active allergens cause barrier breakdown,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1878–1880, 2008.
[166]  C. S. Lee, E. R. Jang, Y. J. Kim, M. S. Lee, S. J. Seo, and M. W. Lee, “Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation,” International Immunopharmacology, vol. 10, no. 4, pp. 520–525, 2010.
[167]  K. Kameda and K. Sato, “Regulation of IL-1α expression in human keratinocytes: transcriptional activation of the IL-1α gene by TNF-α, LPS, and IL-1α,” Lymphokine and Cytokine Research, vol. 13, no. 1, pp. 29–35, 1994.
[168]  A. Kock, T. Schwarz, R. Kirnbauer et al., “Human keratinocytes are a source for tumor necrosis factor α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1609–1614, 1990.
[169]  J. A. Chodakewitz, J. Lacy, S. E. Edwards, N. Birchall, and D. L. Coleman, “Macrophage colony-stimulating factor producton by murine and human keratinocytes. Enhancement by bacterial lipopolysaccharide,” Journal of Immunology, vol. 144, no. 6, pp. 2190–2196, 1990.
[170]  Y. Xie, T. Takai, X. Chen, K. Okumura, and H. J. Ogawa, “Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes,” Journal of Dermatological Science, vol. 66, no. 3, pp. 233–237, 2012.
[171]  M. Kobayashi, R. Yoshiki, J. Sakabe, K. Kabashima, M. Nakamura, and Y. Tokura, “Expression of toll-like receptor 2, NOD2 and dectin-1 and stimulatory effects of their ligands and histamine in normal human keratinocytes,” British Journal of Dermatology, vol. 160, no. 2, pp. 297–304, 2009.
[172]  B. Koller, A. S. Müller-Wiefel, R. Rupec, H. C. Korting, and T. Ruzicka, “Chitin modulates innate immune responses of keratinocytes,” PLoS ONE, vol. 6, Article ID e16594, 2011.
[173]  J. M. Leyva-Castillo, P. Hener, H. Jiang, and M. Li, “TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers Atopic march in mice,” Journal of Investigative Dermatology, vol. 133, no. 1, pp. 154–163, 2013.
[174]  T. Savinko, S. Matikainen, U. Saarialho-Kere et al., “IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors,” Journal of Investigative Dermatology, vol. 132, pp. 1392–1400, 2012.
[175]  S. Mrabet-Dahbi and M. Maurer, “Innate immunity in atopic dermatitis,” Current Problems in Dermatology, vol. 41, pp. 104–111, 2011.
[176]  P. G. Holt and P. D. Sly, “Interaction between adaptive and innate immune pathways in the pathogenesis of atopic asthma: operation of a lung/bone marrow axis,” Chest, vol. 139, no. 5, pp. 1165–1171, 2011.
[177]  C. Xiao, S. M. Puddicombe, S. Field et al., “Defective epithelial barrier function in asthma,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 549–556, 2011.
[178]  M. Amishima, M. Munakata, Y. Nasuhara et al., “Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 6, pp. 1907–1912, 1998.
[179]  W. I. De Boer, H. S. Sharma, S. M. I. Baelemans, H. C. Hoogsteden, B. N. Lambrecht, and G. J. Braunstahl, “Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 3, pp. 105–112, 2008.
[180]  R. E. Mullings, S. J. Wilson, S. M. Puddicombe et al., “Signal transducer and activator of transcription 6 (STAT-6) expression and function in asthmatic bronchial epithelium,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 832–838, 2001.
[181]  G. M. M?ller, S. E. Overbeek, C. G. Van Helden-Meeuwsen et al., “Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids,” Clinical and Experimental Allergy, vol. 26, no. 5, pp. 517–524, 1996.
[182]  S. T. Yerkovich, M. Roponen, M. E. Smith et al., “Allergen-enhanced thrombomodulin (blood dendritic cell antigen 3, CD141) expression on dendritic cells is associated with a TH2-skewed immune response,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, pp. 209–216.e4, 2009.
[183]  Y. J. Liu, “Thymic stromal lymphopoietin: master switch for allergic inflammation,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 269–273, 2006.
[184]  D. A. Knight, S. Lim, A. K. Scaffidi et al., “Protease-activated receptors in human airways: up-regulation of PAR-2 in respiratory epithelium from patients with asthma,” The Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 797–803, 2001.
[185]  J. G. Wright and J. W. Christman, “The role of nuclear factor Kappa B in the pathogenesis of pulmonary diseases: implications for therapy,” American Journal of Respiratory Medicine, vol. 2, no. 3, pp. 211–219, 2003.
[186]  R. Tesse, R. C. Pandey, and M. Kabesch, “Genetic variations in toll-like receptor pathway genes influence asthma and atopy,” Allergy, vol. 66, no. 3, pp. 307–316, 2011.
[187]  D. Stefanowicz, T. L. Hackett, F. S. Garmaroudi et al., “DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children,” PLoS ONE, vol. 7, Article ID e44213, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413