全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Enoant and Ischemia and Reperfusion on Lens Metabolites of Rats

DOI: 10.1155/2013/964601

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of the ischemia and reperfusion on the lens metabolites and the effect of a phytotherapeutic commercial product called “Enoant” (mixed polyphenol content) on the selected lens metabolites were investigated. For this aim, 30 Wistar rats were divided into three groups according to their diet and being subjected to ischemia. 10 of the rats as Group I were fed on dry diet; the other 10 (Group II) were fed on dry diet and drinking water with Enoant. At the end of 15 days period, both groups of rats were subjected to ischemia for 2 hours and reperfused. After another 15 days with their same diet, the rats were decapitated. The remaining 10 rats, which were not subjected to ischemia (Group III), were fed on dry diet only. 1HNMR spectroscopy was used for the determination of lens metabolites of each group of rats. The results obtained from the three groups have been compared statistically. The differences of metabolites were significant except pyruvate and succinate. Oral administration of Enoant revealed effects on increasing membrane stabilization, the antioxidant capacity, osmotic regulator molecule capacity, and sorbitol content of lens disturbed by ischemia. Enoant can be used where oxidative or osmotic stress is formed. 1. Introduction As a necessity of life, the oxidative occurrences in cells cause the formation of reactive oxygen species (ROS) and are neutralized in lens through enzymatic or nonenzymatic means [1–3]. The insuffiencies in antioxidative systems induce production of several inflammatory proteins which contribute to the process of cells that promote damage to lipids, DNA, carbohydrates, and proteins. ROS or free oxygen radicals stimulate cataract development. There are a large number of published items related to antioxidants that inhibit the development of cataract [4]. High plants contain flavones that adsorb free oxygen radicals and carry anti-inflammatory characteristics, and they also contain proanthocyanin and other polyphenolic compounds. Proanthocyanin have been reported to inhibit lipid peroxidation, platelet aggregation, and capillary permeability and fragility and to modulate the enzyme of systems including cyclooxygenase and lipoxygenase [5, 6]. They may prevent free radical-mediated cytotoxicity and lipid peroxidation and protect low-density lipoproteins from oxidation [7]. Grape seed, grape juice, and wine are rich in these polyphenolic compounds. Resveratrol, quercetin, and catechin have recently been shown to have activity against oxidative stress. Flavones in the form of pure matter have been known to have

References

[1]  K. Bhat, “Scavenging of peroxide and related oxidants in human brunecent cataracts,” in Ocular Pharmacology. Recent Advances, S. K. Gupta, Ed., pp. 32–83, Indian Ocular Pharmacological Society, New Delhi, India, 1991.
[2]  A. Spector, “Oxidative stress-induced cataract: mechanism of action,” FASEB Journal, vol. 9, no. 12, pp. 1173–1182, 1995.
[3]  S. D. Varma, P. S. Devamanoharan, and S. M. Morris, “Prevention of cataracts by nutritional and metabolic antioxidants,” Critical Reviews in Food Science and Nutrition, vol. 35, no. 1-2, pp. 111–129, 1995.
[4]  P. F. Jacques and L. T. Chylack Jr., “Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention,” American Journal of Clinical Nutrition, vol. 53, no. 1, pp. 352–355, 1991.
[5]  W. Bors and M. Saran, “Radical scavenging by flavonoid antioxidants,” Free Radical Research Communications, vol. 2, no. 4–6, pp. 289–294, 1987.
[6]  H. Kolodziej, C. Haberland, H. J. Woerdenbag, and A. W. T. Konings, “Moderate cytotoxicity of proanthocyanidins to human tumour cell lines,” Phytotherapy Research, vol. 9, no. 6, pp. 410–415, 1995.
[7]  E. N. Frankel, J. Kanner, J. B. German, E. Parks, and J. E. Kinsella, “Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine,” Lancet, vol. 341, no. 8843, pp. 454–457, 1993.
[8]  D. Bagchi, A. Garg, R. L. Krohn, et al., “Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice,” General Pharmacology, vol. 30, no. 5, pp. 771–776, 1998.
[9]  D. J. Handelsman and J. R. Turtle, “Clinical trial of an aldose reductase inhibitor in diabetic neuropathy,” Diabetes, vol. 30, no. 6, pp. 459–464, 1981.
[10]  Y. S. Lee, S. Lee, H. S. Lee, B.-K. Kim, K. Ohuchi, and K. H. Shin, “Inhibitory effects of isorhamnetin-3-O-β-D-glucoside from salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues,” Biological and Pharmaceutical Bulletin, vol. 28, no. 5, pp. 916–918, 2005.
[11]  S. S. Lim, S. H. Jung, J. Ji, K. H. Shin, and S. R. Keum, “Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues,” Journal of Pharmacy and Pharmacology, vol. 53, no. 5, pp. 653–668, 2001.
[12]  A. Beyer-Mears, E. Cruz, and E. Varagiannis, “Reversal of stage-I sugar cataract by Sorbinil, an aldose reductase inhibitor,” Pharmacology, vol. 31, no. 2, pp. 88–96, 1985.
[13]  P. Montilla, M. Barcos, M. C. Mu?oz, J. R. Mu?oz-Casta?eda, I. Bujalance, and I. Túnez, “Protective effect of Montilla-Moriles appellation red wine on oxidative stress induced by streptozotocin in the rat,” Journal of Nutritional Biochemistry, vol. 15, no. 11, pp. 688–693, 2004.
[14]  A. Sugisawa, S. Inoue, and K. Umegaki, “Grape seed extract prevents H2O2-induced chromosomal damage in human lymphoblastoid cells,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1459–1461, 2004.
[15]  L. G. Astrakas, I. Goljer, S. Yasuhara et al., “Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis,” FASEB Journal, vol. 19, no. 11, pp. 1431–1440, 2005.
[16]  T. Bezabeh, M. R. A. Mowat, L. Jarolim, A. H. Greenberg, and I. C. P. Smith, “Detection of drug-induced apoptosis and necrosis in human cervical carcinoma cells using 1H NMR spectroscopy,” Cell Death and Differentiation, vol. 8, no. 3, pp. 219–224, 2001.
[17]  F. G. Blankenberg, P. D. Katsikis, R. W. Storrs et al., “Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy,” Blood, vol. 89, no. 10, pp. 3778–3786, 1997.
[18]  V. M. Mikhailenko, A. A. Philchenkov, and M. P. Zavelevich, “Analysis of 1H NMR-detectable mobile lipid domains for assessment of apoptosis induced by inhibitors of DNA synthesis and replication,” Cell Biology International, vol. 29, no. 1, pp. 33–39, 2005.
[19]  I. Kara, A. Nurten, M. Ayd?n, et al., “Ischemia/reperfusion in rat: antioxidative effects of enoant on EEG, oxidative stress and inflammation,” Brain Injury, vol. 25, no. 1, pp. 113–126, 2011.
[20]  ?. Risa, O. S?ther, A. Midelfart, J. Krane, and J. ?ejková, “Analysis of immediate changes of water-soluble metabolites in alkali-burned rabbit cornea, aqueous humor and lens by high-resolution 1H-NMR spectroscopy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 1, pp. 49–55, 2002.
[21]  W. T. Evanochko, T. T. Sakai, T. C. Ng et al., “NMR study of in vivo RIF-1 tumors. Analysis of perchloric acid extracts and identification of 1H, 31P and 13C resonances,” Biochimica et Biophysica Acta, vol. 805, no. 1, pp. 104–116, 1984.
[22]  M. Fris, J. ?ejková, and A. Midelfart, “Changes in aqueous humour following single or repeated UVB irradiation of rabbit cornea,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 11, pp. 1705–1711, 2007.
[23]  I. S. Gribbestad and A. Midelfart, “High-resolution 1H NMR spectroscopy of aqueous humour from rabbits,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 232, no. 8, pp. 494–498, 1994.
[24]  I. S. Gribbestad, S. B. Petersen, H. E. Fjosne, S. Kvinnsland, and J. Krane, “1H NMR spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-involved breast tissue,” NMR in Biomedicine, vol. 7, no. 4, pp. 181–194, 1994.
[25]  A. Midelfart, A. Dybdahl, and I. S. Gribbestad, “Metabolic analysis of the rabbit cornea by proton nuclear magnetic resonance spectroscopy,” Ophthalmic Research, vol. 28, no. 5, pp. 319–329, 1996.
[26]  J. K. Nicholson, P. J. D. Foxall, M. Spraul, R. D. Farrant, and J. C. Lindon, “750 MHz 1 H and 1 H 13 C NMR spectroscopy of human blood plasma,” Analytical Chemistry, vol. 67, no. 5, pp. 793–811, 1995.
[27]  N. Pescosolido, A. Miccheli, C. Manetti, G. D. Iannetti, J. Feher, and C. Cavallotti, “Metabolic changes in rabbit lens induced by treatment with dexamethasone,” Ophthalmic Research, vol. 33, no. 2, pp. 68–74, 2001.
[28]  ?. Risa, ?. S?ther, S. L?fgren, P. G. S?derberg, J. Krane, and A. Midelfart, “Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: measurements by high resolution MAS 1H NMR spectroscopy,” Investigative Ophthalmology and Visual Science, vol. 45, no. 6, pp. 1916–1921, 2004.
[29]  O. S?ther, ?. Risa, J. ?ejková, J. Krane, and A. Midelfart, “High-resolution magic angle spinning 1H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 12, pp. 1000–1007, 2004.
[30]  A. Spector, “The lens and oxidative stress,” in Oxidative Stress: Oxidants and antiOxidants, H. Seis, Ed., pp. 529–586, Academic Press, London, UK, 1991.
[31]  S. Zhang, Y. Zhaug, X. Liu, et al., “Detection of sorbitol content in crystalline lens of normal rats and rats with diabetic cataract by H-NMR,” Hua Xi Yi Ke Da Xue Xue Bao, vol. 21, no. 2, pp. 125–127, 1990.
[32]  G. Ellman and H. Lysko, “A precise method for the determination of whole blood and plasma sulfhydryl groups,” Analytical Biochemistry, vol. 93, no. 1, pp. 98–102, 1979.
[33]  H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979.
[34]  P. Kar, D. Laight, H. K. Rooprai, K. M. Shaw, and M. Cummings, “Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: a double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity,” Diabetic Medicine, vol. 26, no. 5, pp. 526–531, 2009.
[35]  J. Sanderson, W. R. McLauchlan, and G. Williamson, “Quercetin inhibits hydrogen peroxide-induced oxidation of the rat lens,” Free Radical Biology and Medicine, vol. 26, no. 5-6, pp. 639–645, 1999.
[36]  F. J. Giblin, J. R. Reddan, L. Schrimscher, D. C. Dziedzic, and V. N. Reddy, “The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells,” Experimental Eye Research, vol. 50, no. 6, pp. 795–804, 1990.
[37]  R. E. Reeves and P. R. Cammarata, “Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells—part 5: mechanism of the myo-inositol efflux pathway,” Investigative Ophthalmology and Visual Science, vol. 37, no. 4, pp. 619–629, 1996.
[38]  S. D. Varma, K. Hegde, and M. Henein, “Oxidative damage to mouse lens in culture. Protective effect of pyruvate,” Biochimica et Biophysica Acta, vol. 1621, no. 3, pp. 246–252, 2003.
[39]  I. G. Obrosova and M. J. Stevens, “Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens,” Investigative Ophthalmology and Visual Science, vol. 40, no. 3, pp. 680–688, 1999.
[40]  K. P. Mitton, P. A. W. Dean, T. Dzialoszynski, H. Xiong, S. E. Sanford, and J. R. Trevithick, “Modelling cortical cataractogenesis 13. Early effects on lens ATP/ADP and glutathione in the streptozotocin rat model of the diabetic cataract,” Experimental Eye Research, vol. 56, no. 2, pp. 187–198, 1993.
[41]  F. Kilic, R. Bhardwaj, J. Caulfeild, and J. R. Trevithick, “Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant,” Experimental Eye Research, vol. 69, no. 3, pp. 291–300, 1999.
[42]  K. P. Mitton, H. A. Linklater, T. Dzialoszynski, S. E. Sanford, K. Starkey, and J. R. Trevithick, “Modelling cortical cataractogenesis 21: in diabetic rat lenses taurine supplementation partially reduces damage resulting from osmotic compensation leading to osmolyte loss and antioxidant depletion,” Experimental Eye Research, vol. 69, no. 3, pp. 279–289, 1999.
[43]  M. J. C. Crabbe and D. Goode, “Aldose reductase: a window to the treatment of diabetic complications?” Progress in Retinal and Eye Research, vol. 17, no. 3, pp. 313–383, 1998.
[44]  J. I. Malone, S. Lowitt, and W. R. Cook, “Nonosmotic diabetic cataracts,” Pediatric Research, vol. 27, no. 3, pp. 293–296, 1990.
[45]  P. F. Kador, Y. Akagi, and J. H. Kinoshita, “The effect of aldose reductase and its inhibition on sugar cataract formation,” Metabolism, vol. 35, no. 4, pp. 15–19, 1986.
[46]  J. Yamakoshi, M. Saito, S. Kataoka, and S. Tokutake, “Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats,” Journal of Agricultural and Food Chemistry, vol. 50, no. 17, pp. 4983–4988, 2002.
[47]  P. F. Kador, D. Betts, M. Wyman, K. Blessing, and J. Randazzo, “Effects of topical administration of an aldose reductase inhibitor on cataract formation in dogs fed a diet high in galactose,” American Journal of Veterinary Research, vol. 67, no. 10, pp. 1783–1787, 2006.
[48]  D. G. Raj, S. Ramakrishnan, and C. S. Devi, “Myoinositol and peroxidation—an in vitro study on human cataractous lens and human erythrocytes,” Indian Journal of Biochemistry and Biophysics, vol. 32, no. 2, pp. 109–111, 1995.
[49]  C. Zhou, N. Agarwal, and P. R. Cammarata, “Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells—part 2: cloning of a 626 bp cDNA portion of a Na+/myo- inositol cotransporter, an osmotic shock protein,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 1236–1242, 1994.
[50]  T. Yokoyama, L.-R. Lin, B. Chakrapani, and V. N. Reddy, “Hypertonic stress increases NaK ATPase, taurine, and myoinositol in human lens and retinal pigment epithelial cultures,” Investigative Ophthalmology and Visual Science, vol. 34, no. 8, pp. 2512–2517, 1993.
[51]  R. Kumar, D. K. Patel, D. Laloo, K. Sairam, and S. Hemalatha, “Inhibitory effect of two Indian medicinal plants on aldose reductase of rat lens in vitro,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 9, pp. 694–697, 2011.
[52]  E. Nicolle, F. Souard, P. Faure, and A. Boumendjel, “Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure-activity relationship,” Current Medicinal Chemistry, vol. 18, no. 17, pp. 2661–2672, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133