全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development and Validation of Stability Indicating RP-HPLC Method for Estimation of Ceftaroline Fosamil in Bulk and Its Parenteral Dosage Forms

DOI: 10.1155/2013/392130

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present method describes the development of a validated RP-HPLC method for determination of ceftaroline fosamil in presence of its degradation products or other pharmaceutical excipients. The drug substance was subjected to stress conditions of acid, alkali, and oxidative and thermal degradation studies. Separation was carried out on a C-18 X-terra column (Waters Corporation, 250?mm × 4.6?mm I.D.; particle size 5?μm) using 40?:?30?:?30 [buffer?: acetonitrile?: methanol] as mobile phase at a flow rate of 1.0?ml/min. UV detection was performed at 242?nm. The method was validated with respect to specificity, selectivity, linearity, accuracy, precision, and robustness. The assay method was found to be linear in the range of 40 to 120?μg/mL with a correlation coefficient of 0.9999. The percentage recovery of active pharmaceutical ingredient from parenteral dosage form ranged from 99.5 to 100.2%. The method precision for determination of ceftaroline was below 0.85%. The results showed that the developed RP-HPLC method is suitable for determination of ceftaroline fosamil in bulk as well as stability samples of pharmaceutical dosage forms containing various excipients. 1. Introduction Ceftaroline fosamil [1, 2] is chemically 4-[2-[[(6R, 7R)-2-carboxy-7-[[(2Z)-(ethoxyimino)[5-(phosphonoamino)-1, 2, 4-thiadiazol-3-yl]acetyl]amino]-8-oxo-5-thia-1-azabicyclo [4.2.0] oct-2-en-3-yl]thio]-4-thiazolyl]-1-methyl-pyridinium, inner salt, monoacetate, and monohydrate. It is one of the most widely used drugs for the treatment of community-acquired bacterial pneumonia, skin, and skin structure infection. It is marketed mainly as intravenous solutions and has a metabolic half-life of the order of 2.5?hrs. International Conference on Harmonization (ICH) has made the need of a stability-indicating assay method for every drug candidate mandatory. A stability-indicating assay method helps in establishing the inherent stability of the drug which in turn provides assurance on detection changes in identity, purity, and potency of the product on exposure to various conditions. Therefore, it is necessary to study the degradation studies of ceftaroline fosamil by exposing to a variety of stress conditions like acidic, alkali, dry heat, and photolytic and oxidative stress. As per the ICH guidelines, stress testing of the drug substance aids in identifying the likely degradation products, which in turn can help in establishing the degradation pathways and the intrinsic stability of the molecule with validation of the analytical procedures used. According to the literature survey, a

References

[1]  http://www.Druginfo.nlm.nih.gov/.
[2]  http://www.rxlist.com/.
[3]  Y. Ge, D. Maynard, and D. E. Rickert, “Comparative pharmacokinetics of ceftaroline in rats, rabbits, and monkeys following a single intravenous or intramuscular injection,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 2, pp. 912–914, 2010.
[4]  R. N. Jones, D. J. Farrell, R. E. Mendes, and H. S. Sader, “Comparative ceftaroline activity tested against pathogens associated with community-acquired pneumonia: results from an international surveillance study,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 3, Article ID dkr101, pp. 69–80, 2011.
[5]  D. E. Wiskirchen, J. L. Crandon, G. H. Furtado, G. Williams, and D. P. Nicolau, “In Vivo efficacy of a human-simulated regimen of ceftaroline combined with NXL104 against extended-spectrum-β-lactamase (ESBL)-producing and non-ESBL-producing Enterobacteriaceae,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 7, pp. 3220–3225, 2011.
[6]  R. A. Keel, J. L. Crandon, and D. P. Nicolau, “Efficacy of human simulated exposures of ceftaroline administered at 600 milligrams every 12 hours against phenotypically diverse Staphylococcus aureus isolates,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 9, pp. 4028–4032, 2011.
[7]  D. Andes and W. A. Craig, “Pharmacodynamics of a new cephalosporin, PPI-0903 (TAK-599), active against methicillin-resistant staphylococcus aureus in murine thigh and lung infection models: Identification of an in vivo pharmacokinetic-pharmacodynamic target,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 4, pp. 1376–1383, 2006.
[8]  A. Suneetha, K. China Venkanna, and S. Kathirvel, “Development and validation of UV spectrophotometric method for quantitative estimation of ceftaroline fosamil in bulk and injection form,” International Journal of Pharmaceutical Research & Analysis, vol. 2, no. 2, pp. 63–67, 2012.
[9]  ICH, “Stability testing of new drug substances and products,” in Proceedings of the International Conference on Harmonization, International Federation of Pharmaceutical Manufacturers & Associations (IFPMA), Geneva, Switzerland, 2003.
[10]  ICH, “Stability testing: Photostability testing of new drug substances and products,” in Proceedings of the International Conference on Harmonization, International Federation of Pharmaceutical Manufacturers & Associations (IFPMA), Geneva, Switzerland, 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413