全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simple and Sensitive Methods for the Determination of 2-(4′-Chloromethyl phenyl) Benzonitrile and 2-(4′-Bromomethyl phenyl) Benzonitrile Contents in Valsartan Drug Substance by Gas Chromatography

DOI: 10.1155/2013/542516

Full-Text   Cite this paper   Add to My Lib

Abstract:

Simple and reliable gas chromatographic methods were developed, optimized, and validated for the determination of 2-(4′-chloromethyl phenyl) benzonitrile (2-CMPB) and 2-(4′-bromomethyl phenyl) benzonitrile (2-BMPB) contents in valsartan drug substance, using benzophenone as internal standard (IS). Efficient chromatographic separations were achieved on DB-1, 30?m length with 0.53?mm i.d., and 3?μm particle diameter column consists of 100% dimethyl polysiloxane as a stationary phase by passing helium as a carrier gas. The analytes were extracted in dichloromethane and monitored by flame ionization detector. The performance of these methods was assessed by evaluating specificity, precision, sensitivity, linearity, and accuracy. The limits of detection (LOD) and limits of quantification (LOQ) established for 2-CMPB are 0.10?μg?mL?1 and 0.32?μg?mL?1, respectively. For 2-BMPB, LOD is 0.31?μg?mL?1 and LOQ is 0.95?μg?mL?1. The average recoveries for 2-CMPB are in the range of 96.8% to 106.7% and for 2-BMPB (LOQ level) are 99.3%. The methods can be successfully applied for the routine analysis of valsartan drug substance. 1. Introduction Valsartan belongs to a class of medicines known as angiotensin II receptor antagonist, which helps to control high blood pressure and congestive heart failure or postmyocardial infarction [1–4]. Chemically, valsartan is N-(1-oxopentyl)-N-[[2′-(1H-tetrazol-5-yl) [1,1′-biphenyl]-4-yl]methyl]-L-valine, having an empirical formula C24H29N5O3 with a molecular weight of 435.5. Valsartan is marketed under the trade name of Diovan [5] and is available as 40?mg, 80?mg, 160?mg, and 320?mg tablets for oral administration. In the synthesis process of valsartan drug substance, 2-(4′-chloromethyl phenyl) benzonitrile (2-CMPB) and 2-(4′-bromomethyl phenyl) benzonitrile (2-BMPB) were used as key raw materials. These residual organic raw materials may come through the manufacturing process. Based on structural alert, these raw materials come under genotoxic category. The maximum daily dosage of valsartan drug substance is 320?mg. As per threshold of toxicological concern (TTC) approach, these residual impurities should be less than 4.7?μg?g?1 [6–8]. Moreover, there is no specific information that is available in the literature on toxicity of these residual impurities confirming their carcinogenicity or mutagenicity. In the available literature many analytical procedures have been reported for the estimation of valsartan and its related substances [9–14]. A good number of analytical methods also reported for the determination of valsartan in

References

[1]  S. Ghosh, A. S. Kumar, and G. N. Mehta, “A short and efficient synthesis of valsartan via a Negishi reaction,” Beilstein Journal of Organic Chemistry, vol. 6, article 27, 2010.
[2]  G. T. McInnes, “Clinical advantage of valsartan,” Cardiology, vol. 91, no. 1, pp. 14–18, 1999.
[3]  S. Oparil, S. Dyke, F. Harris et al., “The efficacy and safety of valsartan compared with placebo in the treatment of patients with essential hypertension,” Clinical Therapeutics, vol. 18, no. 5, pp. 797–810, 1996.
[4]  K. F. Croom and G. M. Keating, “Valsartan: a review of its use in patients with heart failure and/or left ventricular systolic dysfunction after myocardial infarction,” American Journal of Cardiovascular Drugs, vol. 4, no. 6, pp. 395–404, 2004.
[5]  http://www.rxlist.com/diovan-drug.htm.
[6]  L. Müller, R. J. Mauthe, C. M. Riley et al., “A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity,” Regulatory Toxicology and Pharmacology, vol. 44, no. 3, pp. 198–211, 2006.
[7]  E. J. Delaney, “An impact analysis of the application of the threshold of toxicological concern concept to pharmaceuticals,” Regulatory Toxicology and Pharmacology, vol. 49, no. 2, pp. 107–124, 2007.
[8]  K. L. Dobo, N. Greene, M. O. Cyr, S. Caron, and W. W. Ku, “The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development,” Regulatory Toxicology and Pharmacology, vol. 44, no. 3, pp. 282–293, 2006.
[9]  B. M. Sudesh and K. S. Uttamrao, “Determination and validation of valsartan and its degradation products by isocratic HPLC,” Journal of Chemical Metrology, vol. 3, no. 1, pp. 1–12, 2009.
[10]  C. Krishnaiah, A. R. Reddy, R. Kumar, and K. Mukkanti, “Stability-indicating UPLC method for determination of Valsartan and their degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 3, pp. 483–489, 2010.
[11]  A. Zarghi, A. Shafaati, S. M. Foroutan, and H. Movahed, “Rapid quantification of valsartan in human plasma by liquid chromatography using a monolithic column and a fluorescence detection: application for pharmacokinetic studies,” Scientia Pharmaceutica, vol. 76, no. 3, pp. 439–450, 2008.
[12]  N. Aslan, P. E. Erden, E. Canel, B. Zeybek, and E. Kili?, “Potentiometric determination of valsartan in a pharmaceutical preparation and its protonation constants,” Asian Journal of Chemistry, vol. 22, no. 5, pp. 4010–4016, 2010.
[13]  D. U. Vinzuda, G. U. Sailor, and N. R. Sheth, “RP-HPLC method for determination of valsartan in tablet dosage form,” International Journal of ChemTech Research, vol. 2, no. 3, pp. 1461–1467, 2010.
[14]  D. G. Thomas Parambi, M. Mathew, and V. Ganesan, “A validated stability indicating HPLC method for the determination of Valsartan in tablet dosage forms,” Journal of Applied Pharmaceutical Science, vol. 1, no. 4, pp. 97–99, 2011.
[15]  K. Lakshmi and S. Lakshmi, “Simultaneous spectrophotometric determination of valsartan and hydrochlorothiazide by H-point standard addition method and partial least squares regression,” Acta Pharmaceutica, vol. 61, no. 1, pp. 37–50, 2011.
[16]  U. Kullai Reddy, J. Sriramulu, P. Viswanath Reddy, and B. Varaprasad, “Single RP-HPLC method for the determination of Hydrochlorothiazide, Amlodipine besylate and Valsartan in pharmaceutical products,” Journal of Pharmacy Research, vol. 4, no. 3, pp. 894–896, 2011.
[17]  D. Tian, X. Tian, T. Tian, Z. Wang, and F. Mo, “Simultaneous determination of valsartan and hydrochlorothiazide in tablets by RP-HPLC,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 3, pp. 372–374, 2008.
[18]  International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH harmonized tripartite guideline, Validation of analytical procedures: Text and methodology, Q2(R1), step 4, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413